nexia®

RS-232 Control Manual (printable Help file)

Table Of Contents

1.	Auto Mixer Combiner	1
2.	Source Selections	1
3.	Level	4
4.	Level Inc/Dec	5
5.	Invert	5
6.	Mute Button	6
7.	Preset Button	6
8.	Remote Preset Button	6
9.	Logic Gates	6
10.	Logic Delay	8
11.	Command String	9
12.	Volume 8	10
13.	Select 8	11
14.	Volume/Select 8	12
15.	RED-1	13
16.	Voltage Control Box	15
17.	VCB Calibration	16
18.	Logic Box	17
19.	Control Labels	19
20.	Features	20
21.	Architect's & Engineer's Specifications	20
22.	Warranty	23
23.	Documentation	24
24.	Software Tools	25
25.	Basic Screen Elements	25
26.	Layout	26

27.	Bird's Eye View	. 27
28.	Processing Library	. 27
29.	Object Toolbar	. 28
30.	Format Toolbar	. 29
31.	Font	. 29
32.	Size	. 29
33.	Bold	. 30
34.	Italic	. 30
35.	Align Left	. 30
36.	Center	. 30
37.	Align Right	. 30
38.	Back Color	. 30
39.	Text Color	. 31
40.	Fore Color	. 31
41.	Hilite Color	. 31
42.	Pen Width	. 31
43.	Hatch Style	. 31
44.	Layout Toolbar	. 32
45.	Property Sheet	. 32
46.	Layout Property Sheet	. 32
47.	Line Property Sheet	. 33
48.	Object Property Sheet	. 34
49.	Object Inspector	. 35
50.	Layers Sheet	. 35
51.	Toggle Grid	. 36
52.	Toggle Ruler	. 36

53.	Bird's Eye View	. 36
54.	Zoom In	. 36
55.	Zoom Out	. 36
56.	Zoom 1:1	. 37
57.	Zoom Level	. 37
58.	Pack Objects	. 37
59.	Align Edges	. 37
60.	Center In View	. 38
61.	Space	. 38
62.	Make Same Size	. 38
63.	To Front Or Back	. 38
64.	Network Toolbar	. 39
65.	Connect	. 39
66.	Disconnect	. 39
67.	Connect To System	. 39
68.	Disconnect From System	. 40
69.	Send Configuration	. 40
70.	Sync Data	. 40
71.	Start Audio	. 40
72.	Stop Audio	. 41
73.	Device Maintenance	. 41
74.	Device Maintenance Dialog Box	. 41
75.	Standard Toolbar	. 45
76.	New	. 45
77.	Open	. 45
78.	Save	. 45

79.	Compile	46
80.	Cut	46
81.	Сору	46
82.	Paste	46
83.	Undo	46
84.	Redo	46
85.	Print	46
86.	Help	46
	Main Menus	
88.	File Menu	47
	New	
	Open	
	Export	
	Close	
	Save	
	Save As	
	Compile	
	Network	
	Print Preview	
	Print Setup.	
	Recent File	
	Exit	
	Edit Menu	
103.	Undo	50
104.	Redo	50

105. Cut	50
106. Copy	50
107. Paste	51
108. Copy DSP Data	51
109. Paste DSP Data	51
110. Duplicate	51
111. Select All	51
112. Delete	52
113. Control Dialog	52
114. View Menu	52
115. Processing Library Menu	52
116. Presets Menu	53
117. Create/Edit/Recall	53
118. Recall	55
119. Custom Blocks Menu	55
120. Create Custom Block Document	56
121. Merge Into Custom Block	56
122. Split Into Component Blocks	57
123. Tools Menu	58
124. Passwords	58
125. Equipment Table	59
126. Object Inspector	59
127. Layout Compile Results	60
128. Signal Path Identifier	61
129. Options	61
130. General Options	61

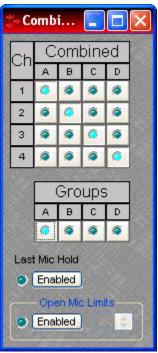
131. Display Options	62
132. Compile Options	63
133. Network Options	65
134. Network Options	65
135. Layout Menu	67
136. Align Objects	68
137. Order	68
138. Object Sheet	68
139. Grid Settings	69
140. Window Menu	69
141. Help Menu	69
142. Status Bar	70
143. Keyboard Shortcuts	70
144. Component Objects	73
145. CS Hardware	73
146. CS Input 10 Channel	75
147. CS Output 6 Channel	75
148. Conference System	76
149. PM Hardware	76
150. PM Input 4 Channel	78
151. PM Input (Stereo) 12 Channel	79
152. PM Output (Stereo) 6 Channel	80
153. Presentation Mixer	81
154. SP Hardware	82
155. SP Input 4 Channel	84
156. SP Output 8 Channel	84

157. Speaker Processor	85
158. VC Hardware	85
159. VC - AEC Input 8 Channel	88
160. VC - AEC Ref 8 Channel	89
161. VC - Pre-AEC 8 Channel	90
162. VC - Input 2 Channel	91
163. VC - Output 4 Channel	91
164. VC - Codec In 1 Channel	92
165. VC - Codec Out 1 Channel	92
166. Videoconference System	93
167. TC Hardware	94
168. TC - AEC Input 8 Channel	96
169. TC - AEC Ref 8 Channel	97
170. TC - Pre-AEC 8 Channel	98
171. TC - Input 2 Channel	99
172. TC - Output 4 Channel	100
173. Telephone Interface	100
174. Teleconference System	104
175. NexLink	105
176. Mixers	106
177. Auto Mixers	106
178. Standard Mixers	108
179. Matrix Mixers	108
180. Room Combiners	108
181. Equalizers	110
182. Parametric Equalizer	110

183. Graphic Equalizer	111
184. Feedback Suppressor	112
185. Filters	112
186. High Pass Filter	113
187. Low Pass Filter	114
188. High Shelf Filter	114
189. Low Shelf Filter	115
190. All-Pass Filter	115
191. Crossovers	116
192. 2-Way Crossover	116
193. 3-Way Crossover	117
194. 4-Way Crossover	118
195. Dynamics	118
196. Leveler	119
197. Comp/Limiter	119
198. Ducker	120
199. Noise Gate	120
200. Ambient Noise Compensator	121
201. ANC Setup Procedure	121
202. Routers	123
203. Router	123
204. Delays	124
205. Delay	124
206. Controls	124
207. Level	126
208. Level Inc/Dec	127

209. Invert	127
210. Mute Button	128
211. Preset Button	128
212. Remote Preset Button	128
213. Logic Gates	128
214. Logic Delay	130
215. Command String	131
216. Volume 8	132
217. Select 8	133
218. Volume/Select 8	134
219. Voltage Control Box	135
220. VCB Calibration	136
221. Logic Box	137
222. Control Labels	139
223. Meters	140
224. Signal Present Meter	140
225. Peak Meter	141
226. RMS Meter	141
227. Logic Meter	141
228. Generators	142
229. Tone Generator	142
230. Pink Noise Generator	142
231. White Noise Generator	143
232. Diagnostics	143
233. Transfer Function	143
234. Specialty	144

235. Pass-Through	144
236. Split Pass-Through Input	145
237. Split Pass-Through Output	145
238. System Design	147
239. Placing Component Objects	147
240. Arranging Component Objects	147
241. Connecting Component Objects	147
242. Component Object Properties	148
243. Customizing Component Objects	149
244. Object and Layout Text	150
245. System Compiling Considerations	150
246. Compile Error Messages	151
247. System Network Considerations	155
248. System Connect Considerations	157
249. System Hardware Connections	158
250. Proper Gain Structure	160
251. Applications	161
252. System Control	162
253. Software User Interface	
254. Remote Control Bus	162
255. Remote Control Bus Hub	
256. Third-Party Control	165
257. Overview	
258. RS-232 Control	
259. Telnet Control	
260. Command	168


261. Device Number	170
262. Attribute	172
263. Input/Output Blocks	172
264. Mixer Blocks	178
265. Equalizer Blocks	181
266. Filter Blocks	182
267. Crossover Blocks	184
268. Dynamics Blocks	185
269. Router Blocks	186
270. Delay Blocks	187
271. Control Blocks	188
272. Meter Blocks	189
273. Generator Blocks	189
274. Instance ID	189
275. Index	190
276. Value	191
277. Responses	192
278. Control Dialog - Overview	193
279. Control Dialog - Levels, Presets, & Meters	194
280. HyperTerminal	195
281. IP Address Commands	197
282. Get/Set IP Address	197
283 Index	199

Introduction

Control Dialogs

Auto Mixer Combiner

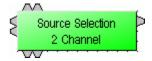
Note: The Auto Mixer Combiner replaces the Mix Minus Combiner in the software and incorporates all of its functionality, plus some additional features. Files created in previous versions of Nexia that contain a Mix Minus Combiner will still function normally and the Mix Minus Combiner will still appear in the layout, even though the block will no longer appear in the Object Toolbar or Processing Library. The user may substitute an Auto Mixer Combiner block anywhere a Mix Minus Combiner would have been used.

Auto Mixer Combiner blocks enhance the capabilities of Auto Mixers in room combining, mix-minus, and input expansion applications. Auto Mixer Combiners combine control data only and, therefore, have no audio outputs. Inputs to an Auto Mixer Combiner come from the Mix outputs of separate Auto Mixer blocks. Ch / Combine allows input channels (1, 2, 3, etc.) to be grouped into specific combinations (A, B, C, etc.). These combinations automatically determine proper routing of control data for the Auto Mixer blocks. Control data represents NOM (number of open mics), ATS (adaptive threshold sensing), and last mic hold status information. Auto Mixer Combiners are used when Auto Mixer outputs are also connected to a separate Matrix Mixer (to create multiple mix-minus outputs). Auto Mixer Combiners allow large Auto Mixers to be created from multiple, smaller ones. This is useful when more than 32 inputs are required or when an Auto Mixer must be placed into multiple Nexia units (for proper DSP allocation or physical location of inputs).

Groups buttons are used to choose a group for viewing and editing two settings: Last Mic Hold and Open Mic Limits. Last Mic Hold determines whether the last open microphone across all Auto Mixer inputs assigned to the current group is allowed to gate off when activity on that channel ceases. **Open Mic Limits** enables (and designates) a maximum allowable number of active microphones across all Auto Mixer inputs assigned to the current group.

Right clicking on Ch / Combine assignments will prompt a menu of additional options.

Source Selections

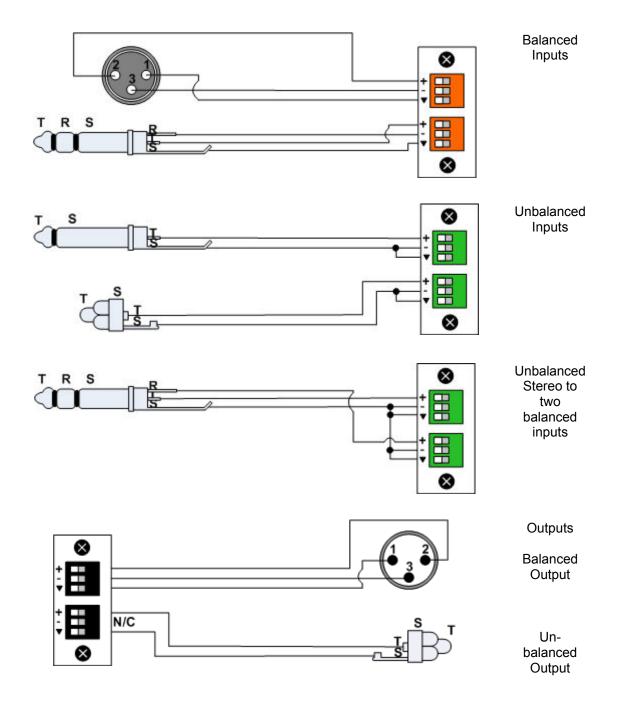

Source Selection blocks are N by 1 routers (where N represents the number of sources) with level control per input and optional logic input and output connections. Source Selection blocks are useful when remote control of audio source selection is required.

When the user first places a Source Selection block into an Nexia layout, this prompts an initialization window.

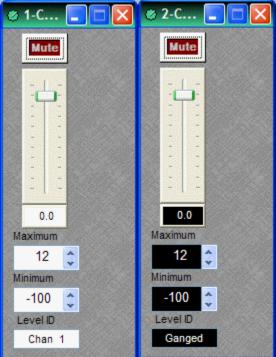
Source Channel Count specifies the number of input channels (2 to 16) and generally corresponds to the number of sources from which the user can choose. If the Source Channel Count is set to Custom, the Chan Count parameter is used to specify the exact number of channels desired.

If selected, Enable Logic provides a logic input and output connection point for each channel.

Source Selection is represented in the layout as a block with a number of audio input connections (specified by the Source Channel Count parameter), one audio output connection, and optionally, a logic input and output connection point for each channel. If logic is enabled, a low-to-high logic transition (i.e., a rising edge) presented to a logic input connection will cause the Source Selection block to switch to the corresponding audio input channel, and the corresponding logic out connection will be at a logic high. All other logic outputs will be low.



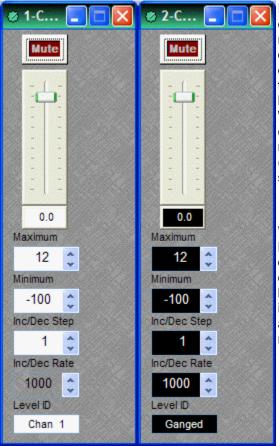
Double clicking on a Source Selection block produces a control window.


Level (dB) adjusts the level (-100 to 12 dB) of the source connected to that channel's input.

Source Selection buttons are used to select the input source that is routed to the audio output connector of the Source Selection block. If the user right clicks a source selection button, this produces a dialog box that allows customization of the text that is displayed on that button. This dialog box can be minimized to create user control surfaces (see Customizing Component Objects).

Audio Wiring Diagrams

Level



Mute turns on/off the channel. Channel level may be entered numerically, or may be adjusted by dragging the **fader**. **Maximum** and **Minimum** can be used to restrict the range of level adjustment provided by the fader. **Level ID** provides a custom label, when the dialog box is minimized (see below).

Right-clicking over certain settings will provide a menu of additional options. Control Dialog Boxes for Level Control components can be minimized to create user control surfaces (see <u>Customizing Component Objects</u>).

When placed from the Object Toolbar, multiple Level Controls may be 'ganged' together onto a single fader. Ganged Level Controls display a 'G' in the upper-right of the Component Object, and Level ID colors are reversed on the Control Dialog. Non-ganged Level Controls have a maximum of 16 channels, whereas ganged Level Controls have a maximum of 32 channels.

Level Inc/Dec

Level Inc/Dec blocks are identical to Level blocks, except they also provide control input nodes for making incremental level changes. Inc/Dec Step determines the amount of level change to occur each time the associated control node is triggered. Control input nodes along the top of the block are labeled as positive (+) and negative (-). When triggered by control output nodes on other components within the layout design, positive nodes produce a single-step increase in level ("Increment") and negative nodes produce a single-step decrease in level ("Decrement").

When placed from the <u>Object Toolbar</u>, multiple Level Inc/Dec Controls may be 'ganged' together onto a single fader. Also, ramping may be enabled at this time. When ramping is enabled, **Inc/Dec Rate** sets timing (mS) between repetitive incremental changes (Inc/Dec Steps) which occur automatically as long as the associated control node (+ or -) remains triggered.

Invert

Invert reverses the polarity of the audio signal (180°). **Identifier** provides a custom label, when the dialog box is minimized (see below).

Right-clicking over certain settings will provide a menu of additional options. Control Dialog Boxes for Invert components can be minimized to create user control surfaces (see <u>Customizing Component Objects</u>).

When placed from the Object Toolbar, multiple Invert channels may be 'ganged' together onto a single control. Ganged Invert controls display a 'G' in the upper-right of the Component Object, and Identifier colors are reversed on the Control Dialog. Non-ganged Invert controls have a maximum of 16 channels, whereas ganged Invert Controls have a maximum of 32 channels.

Mute Button

Mute turns on/off the channel. **Identifier** provides a custom label, when the dialog box is minimized (see below).

Right-clicking over certain settings will provide a menu of additional options. Control Dialog Boxes for Mute Button components can be minimized to create user control surfaces (see Customizing Component Objects).

When placed from the <u>Object Toolbar</u>, multiple Mute Buttons may be 'ganged' together onto a single button. Ganged Mute Buttons display a 'G' in the upper-right of the Component Object, and Identifier colors are reversed on the Control Dialog. Non-ganged Mute Buttons have a maximum of 16 channels, whereas ganged Mute Buttons have a maximum of 32 channels. Also, Mute Button blocks may be placed with control input nodes selected.

Preset Button

Right-clicking over a button provides a list of available Presets which can be assigned to that button. The Preset Number will appear on the button, and the Preset Name will appear to the right. Preset Numbers can be replaced with the word 'Recall' (see General Options). Control Dialog Boxes for Preset Button components can be minimized to create user control surfaces (see Customizing Component Objects).

Remote Preset Button

Remote Preset Buttons are identical to <u>Preset Buttons</u>, except they have control input nodes on the block. These control input nodes allow presets to be recalled via control output nodes on other component blocks. This provides remote control of preset selection, both from internal components and external controls. Unlike most other blocks, multiple control output nodes may be connected to a single control input node on a Remote Preset Button. Control Dialog Boxes for Remote Preset Button components can be minimized to create user control surfaces (see Customizing Component Objects).

Logic Gates

Most Logic Gates have no Control Dialog Boxes. They are used only to customize behavior of other control functions in the system. Logic Gates are connected between the output and input control nodes of other components in the layout. These components can represent internal or external control functions.

Examples

Internal: Auto Mixer output nodes; Ducker input/output nodes; Remote Preset Button input nodes.

External: Select 8 output nodes; Volume/Select 8 output nodes; Logic Box input/output nodes.

Logic Gates alter the normal operation of component control outputs in the following ways:

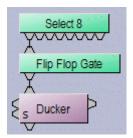
<u>NOT</u>: produces opposite/inverted operation (input HIGH turns output LOW; input LOW turns output HIGH).

AND: all inputs HIGH causes output to go HIGH (any inputs LOW causes output to go LOW).

NAND: all inputs HIGH causes output to go LOW (any inputs LOW causes output to go HIGH).

OR: any inputs HIGH causes output to go HIGH (all inputs LOW causes output to go LOW).

NOR: any inputs HIGH causes output to go LOW (all inputs LOW causes output to go HIGH).


XOR: any inputs (except all) HIGH causes output to go HIGH (all inputs LOW / HIGH causes output to go LOW).

Flip Flop: produces toggle/latching operation (input HIGH changes output state, HIGH / LOW).

Logic State: provides manual latching operation only (includes no input node).

NOTES: NOT and Flip Flop gates have only a single input per output, whereas most other gates have multiple inputs, up to 8. Flip Flop gates provide a control dialog box, for establishing their initial output state. Also, unlike most other blocks, multiple control output nodes may be connected to a single control input node on a Flip Flop gate. Control Dialog boxes for Logic State gates can be minimized to create user control surfaces (see Customizing Component Objects).

Sample Application

Normally, a Select 8 control output connected to a Ducker control input provides a momentary operation (ducking occurs only as long as the Select 8 control is being pressed). However, connecting a Flip Flop Logic Gate between the Select 8 control output and the Ducker control input produces a press-on/press-off operation (ducking begins with the first press of the Select 8 control, and ceases only upon a second press of the Select 8 control).

Logic Delay

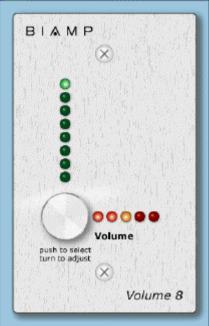
Logic Delays are connected between the output and input control nodes of other components in the layout. These other components may represent internal or external control functions. When a change (on/off) occurs at the Logic Delay input, and remains in that condition beyond the designated delay time, the Logic Delay output will then produce that same change..

On sets turn on delay. **OFF** sets turn off delay. The range for either selection is 0~60,000mS (1 minute). **Bypass** disables the delay without changing settings.

Right-clicking over certain settings will provide a menu of additional options.

Command String

Command String blocks allow RS-232 control of external devices via NEXIA's Serial port. Control input nodes along the top of the block produce corresponding serial commands, when triggered by control output nodes on other components within the design. Commands can also be initiated using the command button which appears within the control dialog box. Command ID allows the command/button to be named. Command String allows the appropriate character string to be entered. Update sends the character string to be stored in NEXIA device memory.



Unlike most other blocks, multiple control output nodes may be connected to a single control input node on a Command String block. Control Dialog Boxes for Command String components can be minimized to create user control surfaces (see Customizing Component Objects).

NOTE: Some command strings may need to output nonprintable characters. The strings themselves must be printable, so this is done by including three-character sequences in the command string. The first will be a tilde, the second and third hex digits. To include a carriage return and line feed pair, for example, in the string, include the text ~0d~0a (either case may be used). A tilde may only be included by using the sequence ~7E (or ~7e) for the tilde character itself.

Volume 8

The Volume 8 is an external control device, which allows adjustment of eight selectable NEXIA volumes. Volumes can be individual or grouped levels within NEXIA. This includes Level Control blocks, as well as level adjustments found in the Control Dialog boxes of other component blocks.

Volume 8 is represented in the layout as a block with no audio or control connections. All functions are assigned using the control dialog box. **Object Code** selects from a list of blocks found in the layout, and **Instance ID** is entered automatically, but both can be found easily using <u>Object ID</u> <u>Inspector</u>. **Control ID** selects from a list of available levels within the chosen block. Volume up/down buttons allow control of assigned levels directly from the dialog box. **Identifier** provides a custom label, when the dialog box is minimized (see below).

Control Dialog Boxes for Volume 8 components can be minimized to create user control surfaces (see <u>Customizing Component Objects</u>).

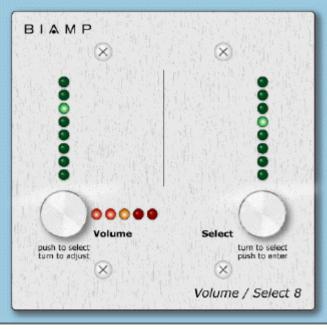
Volume 8 controls fit most US standard single-gang back-boxes (back-boxes are available separately from Biamp Systems). Custom <u>Control Labels</u> may be printed for the Volume 8. Please refer to the '<u>Installation Guide</u>' (included with controls), or see <u>Remote Control Bus</u> for more information. External controls must be identified (see <u>Device Maintenance</u>) and associated with their corresponding component blocks within the layout (see <u>Equipment Table</u>).

Select 8

The Select 8 is an external control device, which allows initiation of eight selectable NEXIA actions. Actions can be individual or grouped functions within NEXIA. This includes recalling presets, ducking, combining, etc.

Select 8 components have no Control Dialog Boxes. They are represented in the layout as a block with eight control output nodes. These control output nodes are connected to control input nodes on the other component blocks to be controlled. These other components may include Remote Preset Buttons, Duckers, Room Combiners, and Logic Boxes. Muting and room combining routines can also be achieved using presets. Logic Boxes can provide logic outputs for controlling additional equipment, external to NEXIA.

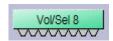
Select 8 behavior can be altered using Logic Gates.



Select 8 controls fit most US standard single-gang back-boxes (back-boxes are available separately from Biamp Systems). Custom <u>Control Labels</u> may be printed for the Select 8.

Please refer to the 'Installation Guide' (included with controls), or see Remote Control Bus for more information. External controls must be identified (see Device Maintenance) and associated with their corresponding component blocks within the layout (see Equipment Table).

Volume/Select 8



The Volume 8 is an external control device, which combines the functions of both Volume 8 and Select 8 controls. Therefore, the Volume/Select 8 is represented with a control dialog box (for volume functions), as well as a component block with control output nodes (for select functions).

Control Dialog Boxes for Volume/Select 8 components can be minimized to create user control surfaces (see Customizing Component Objects).

Volume/Select 8 controls fit most US standard 2-gang back-boxes (back-boxes are available separately from Biamp Systems).

Custom <u>Control Labels</u> may be printed for the Volume/Select 8. Please refer to the '<u>Installation Guide</u>' (included with controls), or see <u>Remote Control Bus</u> for more information. External controls must be identified (see <u>Device Maintenance</u>)

and associated with their corresponding component blocks within the layout (see Equipment Table).

RED-1

Remote Ethernet Device 1 (RED-1) is an external remote control panel that integrates with Nexia systems via Ethernet, using a single CAT5 cable for control and Power-over-Ethernet (PoE). RED-1 allows for the selection of up to 32 control items. A control item can be the initiation of a logic event (such as a preset recall or a source selection), selection of a volume assignment, or both. Volume assignments may be individual or ganged levels within the layout, including Level Control blocks, as well as levels within other component blocks (such as Input/Output blocks, Mixers, Equalizers, etc).

When a RED-1 block is first placed into the layout, an initialization dialog box appears.

Logic Out specifies the number of logic connection points (0 to 32) on the RED-1 block. These connection points are typically wired to Remote Preset or Source Selection blocks but can also be used as general-purpose logic inputs.

Device ID is the name given to each RED-1 block and should correspond to the Device ID of a physical remote panel. No two RED-1 blocks in any layout may have the same Device ID; however, multiple RED-1 panels may have the same Device ID. In that case, the panels' functions are identical and governed by the RED-1 block with the corresponding Device ID.

RED-1 is represented in the layout as a block with a number of logic connection points (determined by the Logic Out setting when the block is created), plus a DF logic output node, which outputs logic high when at least one like-named RED-1 unit is discovered on the network.

All programmed panel functions are assigned using the control dialog box, which is produced by double-clicking the RED-1 block.

A list displays all defined control items, each with a Channel Number and customizable Control Label. The New button creates a control item in the list, and the user is prompted to either accept the default label or enter a new one. Rename allows the user to change the Control Label of the selected control item. Delete removes the selected control item from the list. Move Up and Move Down modify the order of the control items in the list, giving the user the ability to control the display order of the control items on the RED-1 panel.

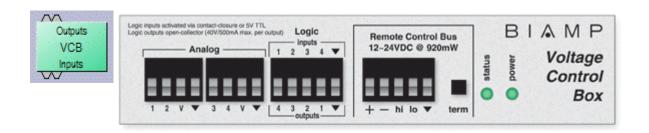
Each control item may have a Level Control assignment, a Logic Control assignment, or both.

Level Control

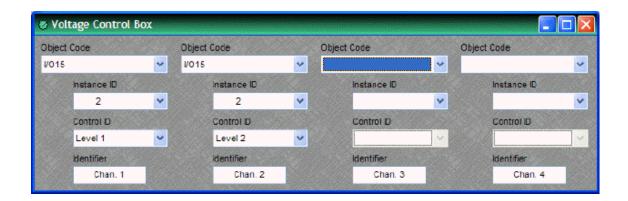
Object Code selects from a list of blocks found in the layout, and the Instance ID is entered automatically, if known. Control ID selects from a list of available levels within the chosen block.

Logic Control

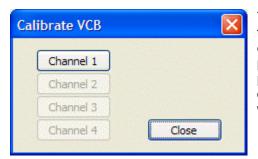
Logic Index specifies which logic connection point, if any, on the RED-1 block will be triggered when that control item is selected.


Once the RED-1 block has been programmed with control items, the Select and Up/Down Arrow buttons at the bottom of the control dialog box may be used to mimic how the control will function from the physical panel.

Control dialog boxes for RED-1 devices may be minimized to create user control surfaces (see Customizing Component Objects).


Voltage Control Box

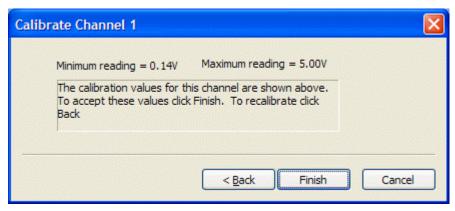
The Voltage Control Box (VCB) is an external control device, which provides four analog potentiometer inputs and four logic inputs/outputs. When a VCB is placed, an Initialization Properties dialog box appears for assigning the quantities of logic inputs/outputs (4 total). Although the quantity of logic connections on a Voltage Control Box (4) is different from those on a Logic Box (20), their operation and behavior are identical. (See Logic Box for further explanation of logic inputs/outputs).


Once a VCB block has been placed, double-clicking it will produce a dialog for assigning Analog (potentiometer) controls. A single VCB allows potentiometer adjustment of up to four selectable Nexia levels. Levels can be individual or ganged levels within Nexia. This includes Level Control blocks, as well as levels within other component blocks (such as Inputs & Outputs, Mixers, Equalizers, etc.). **Object Code** selects from a list of blocks found in the layout, and **Instance ID** is entered automatically, but both can be found easily using Object ID Inspector. **Control ID** selects from a list of available levels within the chosen block. **Identifier** provides a custom label for the assigned control.

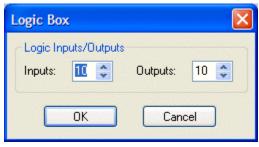
External controls must be identified (see <u>Device Maintenance</u>) and associated with their corresponding component blocks within the layout (see <u>Equipment Table</u>). The VCB will assume a full range of 0~5 Volts returning from connected potentiometers, unless the <u>VCB Calibration</u> procedure is followed (see <u>Device Maintenance</u>). Please refer to the '<u>Installation Guide</u>' (included with controls), or see <u>Remote Control Bus</u> for more information.

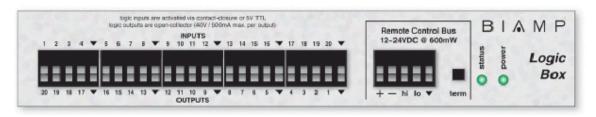
VCB Calibration

Once a VCB (<u>Voltage Control Box</u>) block has been assigned in a Nexia configuration, and the VCB device (with potentiometers attached) is connected to the Nexia <u>Remote Control Bus</u>, the potentiometers can be calibrated for accurate tracking of levels (see <u>Device Maintenance</u>).


The first screen encountered in this process allows for the selection of the potentiometer Channel to be calibrated. Channel numbers correspond to the Analog potentiometer connections on the VCB itself. Only one potentiometer Channel can be calibrated at a time, and only Channels with potentiometers actually connected will be available.

Once the Channel has been selected, this screen will prompt the user to adjust the corresponding potentiometer (on the selected Channel) to its maximum (highest) physical setting, then select "Next".

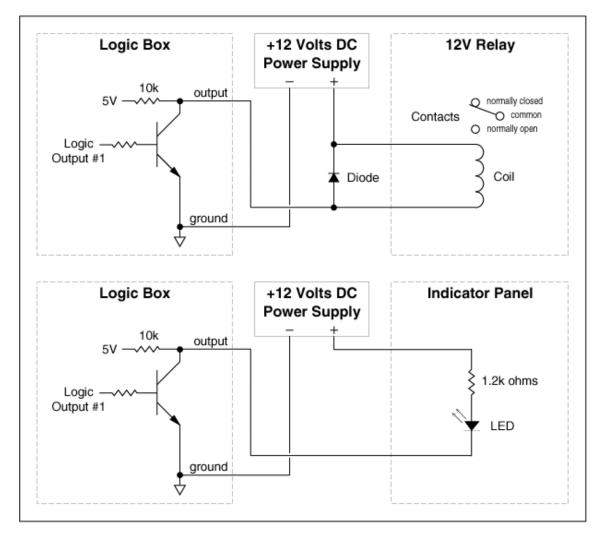

Once the maximum potentiometer setting has been recorded, this screen will prompt the user to adjust the same potentiometer to its minimum (lowest) physical setting, then select "Next".


When maximum and minimum potentiometer settings have both been recorded, this screen will indicate the voltage measurements and prompt the user to either accept these values or recalibrate. "Finish" will return to the Channel selection screen.

NOTE: The entire range of level adjustment assigned to a potentiometer will be controlled by the voltage range measured during calibration. If the potentiometer is not calibrated, or is calibrated incorrectly, accurate control of the intended range of levels may not be achieved.

Logic Box

The Logic Box is an external control device, which provides twenty logic input/output connections. When a Logic Box is placed, an Initialization Properties dialog box appears for assigning the quantities of logic inputs/outputs (20 total). Logic inputs allow external switches to initiate NEXIA actions. Actions can be individual or grouped functions within NEXIA. This includes recalling presets, ducking, combining, etc. Logic outputs can be used to control additional equipment, external to NEXIA.


Logic Box components have no Control Dialog Boxes. They are represented in the layout as a block with a total of twenty control input/output nodes. Logic Inputs (on the box) are represented as control output nodes (on the block). These control output nodes may be connected to control input nodes on other components, such as Remote Preset Buttons, Room Combiners, Duckers, Mute Buttons, and Level Inc/Dec controls. Logic Outputs (on the box) are represented as control input nodes (on the block). These control input nodes may be connected to control output nodes on other components, such as Auto Mixers, Duckers, and Select 8. Unlike other components, Logic Box output nodes may be connected to input nodes on the same Logic Box block, allowing Logic Inputs (external switches) to control Logic Outputs (external equipment).

Logic Box behavior can be altered using <u>Logic Gates</u>. Please refer to the <u>'Installation Guide'</u> (included with controls), or see <u>Remote Control Bus</u> for more information. External controls must be identified (see <u>Device Maintenance</u>) and associated with their corresponding component blocks within the layout (see <u>Equipment Table</u>).

Up to 20 logic inputs are availble on the Logic Box. Logic inputs allow remote control of NEXIA via external circuits such as switches, relays, and logic outputs from other devices. When nothing is connected to a logic input, an internal pull-up resistor keeps it at a 'high' state (+5.0 VDC). The logic input is activated when its input goes 'low' (less than +0.8 VDC), and is deactivated when its input goes 'high' (greater than +2.0 VDC). A logic input can be controlled in one of three ways: 1) Using an 'open-collector' or 'open-drain' logic output from an external device to short the logic input to ground. 2) Using a switch, relay, or other contact-closure to short the logic input to ground. 3) Using an active 5V TTL output driver circuit (such as from a third-party controller) to actively drive the logic input to a 'high' or 'low' state. Multiple contact-closures or 'open-collector'/open-drain' logic outputs may be wired in parallel to a single logic input (see diagram below). Open-collector or open-drain logic outputs and contact-closures should be rated for at least 5 Volts / 1mA operation. Active output driver circuits should not exceed a signal range of 0~5 Volts DC, and should have a minimum pulse width of 10 milliseconds. The logic input impedance is approximately 10k ohms.

The Logic Box provides up to 20 logic outputs. Logic outputs can be used to control relays and indicators or to drive logic inputs of other devices. The Logic Box logic outputs are 'open collector' with an internal pull-up. Each logic output is an NPN transistor with the collector being the output and the emitter being ground (see diagram below). When a logic output is turned on, the transistor provides a path for DC current to flow, lowering the output voltage to below 0.8V. When a logic output is turned off, the internal pull-up resistor raises the output voltage to near 5V, depending on the output current. To activate external relays or indicators, an external power supply must be used (see diagram below). The logic output transistors are rated up to a maximum of 40 VDC and 500 mA per output (24 volt relay coils maximum). However, +12 Volts DC is sufficient power for most applications. When using the logic outputs to control relays, protection diodes must be used to suppress high voltage transients that are generated when the relays turn off (see diagram below).

Control Labels

The Volume 8, Select 8, and Volume/Select 8 controls all come with a sheet of clear, adhesive-backed labels, for custom printing on a laser printer. A Word document is available on the NEXIA software CD and on the Biamp web site (www.biamp.com), as a label printing template. These labels are meant to be printed using desk-top laser printers only. It is recommended that the printer be set for 'label' printing, and the label sheet should be 'short-edge' feed from the 'bypass' tray. A test printing of a single label should be done, to assure proper alignment of text. To compensate for any mis-alignment of text, margins within the Word document may be adjusted. Care should be taken in placement of the labels onto the controls. To avoid finger-prints, the use of a knife-blade or tweezers is recommended for handling. Severe bending or curling of the label may cause loss of some toner (text). When placing the label on the control panel, use the vertical column of LED indicators as a visual reference of alignment. Once the label is in place, a second (un-printed) label may be placed over the first label, to provide protection against wear. Each sheet contains 25 labels, so in case of errors, additional labels may be printed.

NOTE: Originally, labels were 1.35" wide and used the Word document (V8S8 Labels.doc). However, newer control panels require labels which are only 1.25" wide and use Word document (V8S8 B Labels.doc). Check label width and use the appropriate file for printing.

In the Word document, select Show Gridlines from the Table menu. Each large cell represents a label. The first four columns are 'left-justified' to create labels for *Volume 8* and *Select 8* panels, as well as for the 'Volume' (left) section of *Volume/Select 8* panels. The last column is 'right-justified' to create labels for the 'Select' (right) section of *Volume/Select 8* panels. Left-click inside any large cell, and begin typing. Use 'Enter' to begin a new line, and again to leave a blank line. To avoid printing errors, do not change line-spacing or other formatting parameters. However, if you do not have the default font (Helvetica), or if you wish to change label appearance, you may select a different font before typing.

Features

The NEXIA family of digital signal processors (DSP) is designed with application specific inputs and outputs (I/O), but with much more power than comparable analog products. Intuitive dragand-drop software allows for easy configuration and maximum flexibility. Setup and control is achieved utilizing Ethernet ports. NexLink ports allow up to four NEXIA units (any models) to be used together in the same system, providing totally different combinations of functionality.

NEXIA <u>CS</u> has 10 mic/line inputs and 6 independent mix outputs, and is intended for a variety of conferencing applications such as boardrooms, courtrooms, and council chambers.

NEXIA PM has 4 mic/line inputs, 6 stereo line inputs, and 6 line outputs, and is intended for multimedia presentation applications requiring both microphone and program content.

NEXIA <u>SP</u> has 4 line inputs and 8 independent mix outputs, and is intended for speaker processing applications requiring line inputs feeding a larger number of discrete outputs.

NEXIA <u>VC</u> has 8 wide-band AEC mic/line inputs, 2 standard mic/line inputs, 4 mic/line outputs, and a codec interface, and is intended for a variety of videoconferencing applications such as boardrooms, courtrooms, and council chambers.

NEXIA <u>TC</u> has 8 wide-band AEC mic/line inputs, 2 standard mic/line inputs, 4 mic/line outputs, and a telephone interface, and is intended for a variety of teleconferencing applications such as boardrooms, courtrooms, and council chambers.

NEXIA software includes a broad selection of audio components, routing options, and signal processing. The internal system design is completely user definable via PC software, and can be controlled via dedicated software screens, RS-232 control systems, and/or a variety of optional remote control devices.

Architect's & Engineer's Specifications

NEXIA® CS

The DSP conference system shall provide ten balanced mic/line inputs and six balanced mic/line outputs on plug-in barrier-strip connectors. Inputs and outputs shall be analog, with internal 24-bit A/D & D/A converters operating at a sample rate of $48 \, \mathrm{kHz}$. All internal processing shall be digital (DSP). NexLink connections shall allow sharing of digital audio within multi-unit systems.

Software shall be provided for creating/connecting DSP system components within each hardware unit. Available system components shall include (but not be limited to) various forms of: mixers, equalizers, filters, crossovers, dynamics/gain controls, routers, delays, remote controls, meters, generators, and diagnostics. Ethernet communications shall be utilized for software control and configuration. After initial programming, processors may be controlled via dedicated software screens, third-party RS-232 control systems, and/or optional remote control devices. Software shall operate on a PC computer, with network card installed, running Windows® XP Professional/Vista. The DSP conference system shall be CE marked, UL listed, and carry a five-year warranty.

The DSP conference system shall be NEXIA® CS.

NEXIA® PM

The DSP presentation mixer shall provide four balanced mic/line inputs and three balanced stereo line outputs on plug-in barrier-strip connectors, plus six unbalanced stereo line inputs on RCA connectors. Inputs and outputs shall be analog, with internal 24-bit A/D & D/A converters operating at a sample rate of 48kHz. All internal processing shall be digital (DSP). NexLink connections shall allow sharing of digital audio within multi-unit systems.

Software shall be provided for creating/connecting DSP system components within each hardware unit. Available system components shall include (but not be limited to) various forms of: mixers, equalizers, filters, crossovers, dynamics/gain controls, routers, delays, remote controls, meters, generators, and diagnostics. Ethernet communications shall be utilized for software control and configuration. After initial programming, processors may be controlled via dedicated software screens, third-party RS-232 control systems, and/or optional remote control devices. Software shall operate on a PC computer, with network card installed, running Windows® XP Professional/Vista. The DSP presentation mixer shall be CE marked, UL listed, and carry a five-year warranty.

The DSP presentation mixer shall be NEXIA® PM.

NEXIA® SP

The DSP speaker processor shall provide four balanced line inputs and eight balanced line outputs on plug-in barrier-strip connectors. Inputs and outputs shall be analog, with internal 24-bit A/D & D/A converters operating at a sample rate of $48 \rm kHz$. All internal processing shall be digital (DSP). NexLink connections shall allow sharing of digital audio within multi-unit systems.

Software shall be provided for creating/connecting DSP system components within each hardware unit. Available system components shall include (but not be limited to) various forms of: mixers, equalizers, filters, crossovers, dynamics/gain controls, routers, delays, remote controls, meters, generators, and diagnostics. Ethernet communications shall be utilized for software control and configuration. After initial programming, processors may be controlled via dedicated software screens, third-party RS-232 control systems, and/or optional remote control devices. Software shall operate on a PC computer, with network card installed, running Windows® XP Professional/Vista. The DSP speaker processor shall be CE marked, UL listed, and carry a five-year warranty.

The DSP speaker processor shall be NEXIA® SP.

NEXIA® VC

The videoconference DSP shall provide eight wide-band AEC balanced mic/line inputs, two standard balanced mic/line inputs, four balanced mic/line outputs, and codec audio input/output on plug-in barrier-strip connectors. Inputs and outputs shall be analog, with internal 24-bit A/D & D/A converters operating at a sample rate of 48kHz. All internal processing shall be digital (DSP). NexLink connections shall allow sharing of digital audio within multi-unit systems.

Software shall be provided for creating/connecting DSP system components within each hardware unit. Available system components shall include (but not be limited to) various forms of: mixers, equalizers, filters, crossovers, dynamics/gain controls, routers, delays, remote controls, meters, generators, and diagnostics. Ethernet communications shall be utilized for software control and configuration. After initial programming, processors may be controlled via dedicated software screens, third-party RS-232 control systems, and/or optional remote control devices. Software shall operate on a PC computer, with network card installed, running Windows® XP Professional/Vista. The DSP conference system shall be CE marked, UL listed, and carry a five-year warranty.

The videoconference DSP shall be NEXIA® VC.

NEXIA® TC

The teleconference DSP shall provide eight wide-band AEC balanced mic/line inputs, two standard balanced mic/line inputs, and four balanced mic/line outputs on plug-in barrier-strip connectors. A telephone interface shall be provided on a pair of RJ11 jacks. Inputs and outputs shall be analog, with internal 24-bit A/D & D/A converters operating at a sample rate of 48kHz. All internal processing shall be digital (DSP). NexLink connections shall allow sharing of digital audio within multi-unit systems.

Software shall be provided for creating/connecting DSP system components within each hardware unit. Available system components shall include (but not be limited to) various forms of: mixers, equalizers, filters, crossovers, dynamics/gain controls, routers, delays, remote controls, meters, generators, and diagnostics. Ethernet communications shall be utilized for software control and configuration. After initial programming, processors may be controlled via dedicated software screens, third-party RS-232 control systems, and/or optional remote control devices. Software shall operate on a PC computer, with network card installed, running Windows® XP Professional/Vista. The DSP conference system shall be CE marked, UL listed, and carry a five-year warranty.

The teleconference DSP shall be NEXIA® TC.

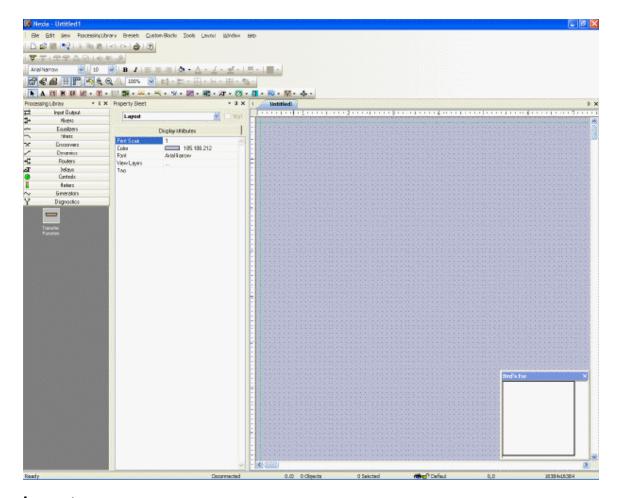
Warranty

BIAMP SYSTEMS IS PLEASED TO EXTEND THE FOLLOWING 5-YEAR LIMITED WARRANTY TO THE ORIGINAL PURCHASER OF THE PROFESSIONAL SOUND EQUIPMENT DESCRIBED IN THIS MANUAL

- 1. BIAMP Systems warrants to the original purchaser of new products that the product will be free from defects in material and workmanship for a period of 5 YEARS from the date of purchase from an authorized BIAMP Systems dealer, subject to the terms and conditions set forth below.
- 2. If you notify BIAMP during the warranty period that a BIAMP Systems product fails to comply with the warranty, BIAMP Systems will repair or replace, at BIAMP Systems' option, the nonconforming product. As a condition to receiving the benefits of this warranty, you must provide BIAMP Systems with documentation that establishes that you were the original purchaser of the products. Such evidence may consist of your sales receipt from an authorized BIAMP Systems dealer. Transportation and insurance charges to and from the BIAMP Systems factory for warranty service shall be your responsibility.
- 3. This warranty will be VOID if the serial number has been removed or defaced; or if the product has been altered, subjected to damage, abuse or rental usage, repaired by any person not authorized by BIAMP Systems to make repairs; or installed in any manner that does not comply with BIAMP Systems' recommendations.

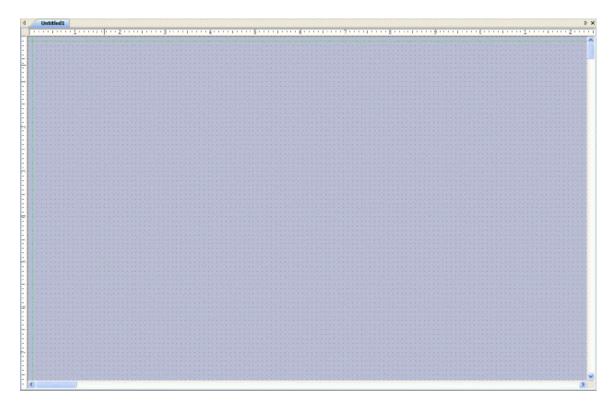
- 4. Electro-mechanical fans, electrolytic capacitors, and normal wear and tear of items such as paint, knobs, handles, and covers are not covered under this warranty.
- 5. THIS WARRANTY IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESS OR IMPLIED. BIAMP SYSTEMS DISCLAIMS ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
- 6. The remedies set forth herein shall be the purchaser's sole and exclusive remedies with respect to any defective product.
- 7. No agent, employee, distributor or dealer of Biamp Systems is authorized to modify this warranty or to make additional warranties on behalf of Biamp Systems. statements, representations or warranties made by any dealer do not constitute warranties by Biamp Systems. Biamp Systems shall not be responsible or liable for any statement, representation or warranty made by any dealer or other person.
- 8. No action for breach of this warranty may be commenced more than one year after the expiration of this warranty.
- 9. BIAMP SYSTEMS SHALL NOT BE LIABLE FOR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS OR LOSS OF USE ARISING OUT OF THE PURCHASE, SALE, OR USE OF THE PRODUCTS, EVEN IF BIAMP SYSTEMS WAS ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Biamp Systems 10074 S.W. Arctic Drive Beaverton, Oregon 97005 (503) 641-7287


Documentation

The information contained in this Help file can be printed in manual form (with Table of Contents and Index). Two <u>PDF</u> documents are provided on the software CD-ROM for this purpose. The file **NEXIA.pdf** is intended for printing on **Letter** (8.5" x 11") size paper. The file **NEXIA-A4.pdf** is intended for printing on **A4** (210mm x 297mm) size paper. These are printable Help files. Similar PDF files are also available on the software CD-ROM, for the 'RS-232 & Telnet Protocol' and the 'Quick Start Guide & Safety Information' documents.

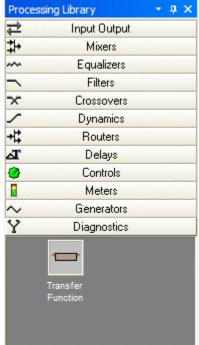
Software Tools


Basic Screen Elements

The main screen of the NEXIA software has several sections. The Layout occupies the largest portion of the main screen, at the lower-right. This is the area where system design actually occurs, with the placement & connection of Component Objects. Component Objects represent the individual hardware devices and signal processing blocks within the system. Other objects include Lines (for connecting components) and Text (for labeling the system). If a system becomes too big to fit the Layout, a Bird's Eye View is available to aid navigation. A Property Sheet, at the lower-left of the main screen, provides an editable table of attributes regarding the Layout and its associated objects. A Processing Library of available Component Objects is displayed, at the lower-left of the main screen, for drag & drop placement into the Layout. However, the Processing Library can be closed, increasing the width of the Layout, and Component Object selection can then be accomplished using the Object Toolbar, located directly above the Layout. The Object Toolbar also provides the option of either a select or a text cursor. Above the Object Toolbar is the Format Toolbar, which allows customizing of text & colors used in the Layout and associated objects. Above the Format Toolbar is the Layout Toolbar, which affects certain aspects of Layout, such as the grid, rulers, zooming, & alignment of Component Objects. The Layout Toolbar can also open editing/information sheets for properties, objects, & layers. Above the Layout Toolbar is the Network Toolbar, with functions related to communications, configuration, maintenance, and testing of the system network. Above the Network Toolbar is the Standard Toolbar, with file functions such as new, open, & save, plus additional functions such as cut, copy, paste, print, & help. The Standard Toolbar also includes the Compile function, which will generate a new configuration file, while checking system layout/connections & determining DSP resource allocation. Above the Standard Toolbar are the Main Menus, which provides all of the toolbar functions mentioned above, with several more in-depth editing functions. Along the bottom edge of the main screen is a Status Bar, which gives indication of object quantity, location, & size, as well as layer name, visibility, & locking. The location and shape of all toolbars, including the Processing Library, may be changed to fit the user's preference.

Layout

The Layout occupies the largest portion of the main screen, at the lower-right. This is the area where system design actually occurs, with the placement & connection of Component Objects. Component Objects represent the individual hardware devices and signal processing blocks within the system. Other objects include Lines (for connecting components) and Text (for labeling the system). Component objects can be placed into the Layout from the Processing Library, the Object Toolbar, or the Processing Library Menu. A Property Sheet provides an editable table of attributes regarding the Layout and its associated objects. The Layout has fixed dimensions of 16384x16384 pixels (approx. 163.75" square). Therefore, horizontal & vertical scroll bars are used to navigate within the Layout. Zoom In/Out and a Bird's Eye View are also available as navigational aids, and can be accessed from the Layout Toolbar or View Menu. The Ruler and Grid may be turned on/off from the Layout Toolbar, and the background color of the Layout may be changed from the Format Toolbar. Grid Settings, such as snap-to-grid, grid spacing, and guideline spacing, are available from the Layout Menu. Minimize, Down-Size, and Close buttons for the Layout are located in the upper-right corner of the main screen. Right-clicking over the Layout provides a pop-up menu of options.



Bird's Eye View

The Bird's Eye View provides a thumb-nail sketch of the entire system design, to aid navigation within the Layout. Bird's Eye View initially covers an area of only 8" x 5", but will automatically increase size to cover a larger system design. A black rectangle frames the viewable area. The rectangle may be dragged to view any location within the system design. The rectangle also has handles to re-size the viewable area, from a minimum of 4" x 2.5" to a maximum of 16" x 10". The Bird's Eye View can be made dockable (see Options). If Bird's Eye View docking is enabled, a Menu icon (upper-right of title-bar) allows the Bird's Eye View to be docked or floating, and to be hidden (closed) or to utilize Auto Hide (if docked). The menu may also be accessed by right-clicking over the Bird's Eye View. The thumb-tack allows the Bird's Eye View to remain open (disables Auto Hide).

Processing Library

A Processing Library of available Component Objects is displayed, at the lower-left of the main screen. <u>CS</u>, <u>PM</u>, <u>SP</u>, <u>VC</u>, and <u>TC</u> hardware are found under the Input Output category. All other Component Objects are organized in the following categories: <u>Mixers</u>; <u>Equalizers</u>; <u>Filters</u>; <u>Crossovers</u>; <u>Dynamics</u>; <u>Routers</u>; <u>Delays</u>; <u>Controls</u>; <u>Meters</u>; <u>Generators</u>; and <u>Diagnostics</u>.

Once a category is selected, the pre-defined components available from that category will be displayed underneath the category heading. A vertical scroll bar will appear on the right if the available components cannot all be displayed. To place a Component Object, simply drag & drop it into the Layout at the desired location. Customized and grouped components may be added to the Processing Library (see Customizing Component Objects).

A **Menu** icon (upper-right of title-bar) allows the Processing Library to be docked or floating, and to be hidden (closed) or to utilize Auto Hide (if docked). The menu may also be accessed by right-clicking over the Processing Library. The **thumb-tack** allows the Processing Library to remain open (disables Auto Hide). The Processing Library may be closed, thereby increasing the width of the Layout, and components can instead be selected from the <u>Object Toolbar</u>. The Object Toolbar also allows configuration of some components as they are placed into the Layout.

To close the Processing Library, left-click on the 'X' in the upper-right corner. The Processing Library can again be opened by selecting any component category from the Processing Library Menu. The Processing Library can also be opened/closed from the View Menu.

Right-clicking over the Processing Library provides a pop-up menu of options. The location and shape of all toolbars, including the Processing Library, may be changed to fit the user's preference.

Object Toolbar

The Object Toolbar, located directly above the Layout, allows Component Object selection for placement into the Layout. <u>CS</u>, <u>PM</u>, <u>SP</u>, <u>VC</u>, and <u>TC</u> represent the models of NEXIA analog input/output hardware to be used in a system. <u>Nx</u> allows up to four NEXIA devices (any models) to share digital audio signals via NexLink. All other Component Objects are organized in the following categories: <u>Mixers</u>; <u>Equalizers</u>; <u>Filters</u>; <u>Crossovers</u>; <u>Dynamics</u>; <u>Routers</u>; <u>Delays</u>; <u>Controls</u>; <u>Meters</u>; <u>Generators</u>; <u>Diagnostics</u>; and <u>Specialty</u>.

Each category is represented by an icon, with a drop-down menu to the right. To place a Component Object, first choose the appropriate category, then select the desired component from the drop-down menu. Once the component has been selected, simply left-click at the desired location on the Layout. Left-clicking a category icon will select the component which occurs first in the menu list. When using the Object Toolbar to place components into the Layout, certain components will present the user with a pop-up window of configuration options.

The Object Toolbar also provides the option of either a select cursor or a text cursor. The select cursor is for component selection, placement, wiring, etc. The text cursor is for placing Text Objects into the Layout, for system design labeling purposes.

When using the Object Toolbar, the Processing Library may be closed, increasing the width of the Layout. The Object Toolbar may be opened/closed from the <u>View Menu</u>. The location and shape of all toolbars may be changed to fit the user's preference.

Format Toolbar

Format Toolbar

The Format Toolbar allows customization of text & colors used in the Layout and associated Component, Line, & Text Objects. The available tools are: Font; Size; Bold; Italics; Align Left; Center; Align Right; Back Color; Text Color; Fore Color; Hilite Color; Pen Width; and Hatch Style. The Format Toolbar may be opened/closed from the View Menu. The location and shape of all toolbars may be changed to fit the user's preference.

Tools

Font

Provides a drop-down menu of lettering styles

for use in Component or Text Objects.

Size

Provides a drop-down menu of lettering sizes

for use in Component or Text Objects.

Bold

Changes the selected text to a thicker version of the chosen font.

Italic

Changes the selected text to an italicized version of the chosen font.

Align Left

Aligns the selected text to the left margin of the Component or Text Object.

Center

Centers the selected text between the left and right margins of the Component or Text Object.

Align Right

Aligns the selected text to the right margin of the Component or Text Object.

Back Color

Provides a drop-down menu for changing the background color of the Layout, or of selected Component or Text Objects.

Left-clicking the icon applies the color which was selected last.

Text Color

Provides a drop-down menu for changing the text color in selected Component or Text Objects.

Left-clicking the icon applies the color which was selected last.

Fore Color

Provides a drop-down menu for changing the color of the lower and right borders, as well as any internal Hatching, of the selected Component, Line, or Text Objects.

Left-clicking the icon applies the color which was selected last.

Hilite Color

Provides a drop-down menu for changing the color of the upper and left borders of the selected Component or Text Objects.

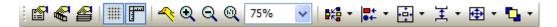
Left-clicking the icon applies the color which was selected last.

Pen Width

Provides a drop-down menu for changing the width of line used for the borders of the selected Component, Line, or Text Objects.

Left-clicking the icon applies the width which was selected last.

Hatch Style



Provides a drop-down menu for changing the hatching style within the selected Component or Text Objects.

Left-clicking the icon applies the style which was selected last.

Layout Toolbar

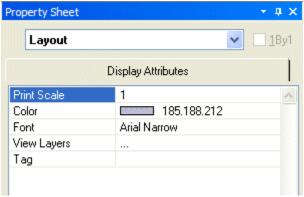
Layout Toolbar

The Layout Toolbar affects certain aspects of Layout, such as the grid, rulers, zooming, & alignment of Component Objects. The Layout Toolbar can also open editing/information sheets for properties, objects, & layers. The available tools are: Property Sheet; Object Inspector; Layers Sheet; Toggle Ruler; Bird's Eye View; Zoom Out; Zoom Out; Zoom 1:1; Zoom In; Zoom Out; Zoom Out; Zoom In; Zoom Out; Zoom In; <a href="Zoom In"

Tools

Property Sheet

Provides an editable table of attributes regarding the Layout and its associated objects. Only Display Attributes are shown for the Layout (and Lines). Both

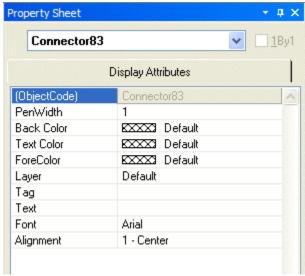

Display and DSP Attributes are shown for Component Objects.

see Layout Property Sheet

see Line Property Sheet

■see Object Property Sheet

Layout Property Sheet

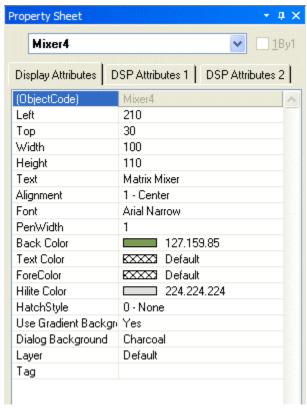

Provides an editable table of attributes regarding the Layout. Only Display Attributes are shown for the Layout. Most Display Attributes duplicate functions found in the Format Toolbar However, some exceptions are as follows:

PrintScale is entered as decimal information, where 0.5 = 50% or 2.0 = 200%. **ViewLayers** opens the <u>Layers Sheet</u>. **Tag** is for user comments or other identifying text.

A **Menu** icon (upper-right of title-bar) allows the Property Sheet to be docked or floating, and to be hidden (closed) or to utilize Auto Hide (if docked). The menu may also be accessed by right-clicking over the Property

Sheet. The **thumb-tack** allows the Property Sheet to remain open while selecting other objects (disables Auto Hide). **1By1** allows any group of selected components (multiselection) to appear on the menu.

Line Property Sheet

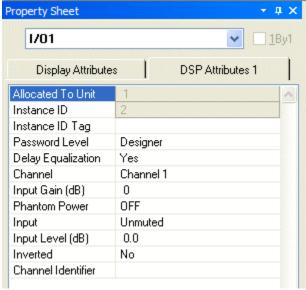


Only Display Attributes are shown for Lines (component connections). Most Display Attributes duplicate functions found in the Format Toolbar. However, some exceptions are as follows:

Object Code is a non-editable identifier. Layer determines which layer the Line is assigned to. Tag is for user comments or other identifying text. Text allows identifying text to be placed on the line itself. Font and Alignment affect the line text.

A **Menu** icon (upper-right of title-bar) allows the Property Sheet to be docked or floating, and to be hidden (closed) or to utilize Auto Hide (if docked). The menu may also be accessed by right-clicking over the Property Sheet. The **thumb-tack** allows the Property Sheet to remain open while selecting other objects (disables Auto Hide). **1By1** allows any group of selected components (multiselection) to appear on the menu.

Object Property Sheet



Both Display and DSP Attributes are shown for component objects.

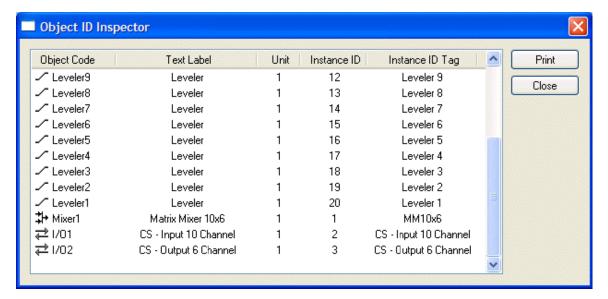
Most Display Attributes duplicate functions found in the <u>Format Toolbar</u>. However, some exceptions are as follows:

Object Code is a non-editable identifier. Left, Top, Width, & Height specify object location and size (in pixels). Use Gradient Background changes the block color from gradient shading (default) to solid. Dialog Background selects a background texture for the Control Dialog associated with that block. Layer determines which layer the component is assigned to. Tag is for user comments or other identifying text.

Most DSP Attributes duplicate functions found in the individual component Control Dialog boxes (see <u>Component Object Properties</u>). However, some exceptions are as follows:

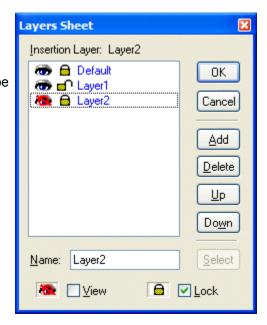
Allocated To Unit indicates the particular unit in which the component (DSP block) resides. NOTE: Some Control blocks allow Allocated to Unit to be changed. Instance ID is the system-wide identifier number for the component (DSP block). Instance ID Tag allows a custom name to be used in lieu of the Instance ID number Password Level selects either Designer or Technician access level, for individual components. Delay Equalization turns on/off compensation for propagation delay (Input Output components only). See System Compiling Considerations. Channel Identifier allows labeling of the individual inputs/outputs on a component. On most component blocks, this labeling appears only when the cursor is over the associated node.

A **Menu** icon (upper-right of title-bar) allows the Property Sheet to be docked or floating, and to be hidden (closed) or to utilize Auto


Hide (if docked). The menu may also be accessed by right-clicking over the Property Sheet. The **thumb-tack** allows the Property Sheet to remain open while selecting other objects (disables Auto Hide). **1By1** allows any group of selected components (multiselection) to appear on the menu.

Object Inspector

Provides a list of all objects within the Layout, along with their Object Codes,


Text Labels, Unit numbers, Instance ID numbers, and Instance ID Tags.

Layers Sheet

Provides an editable table of Layer properties. Layers can be used to separate a Layout into multiple parts. The Layers can be organized with regards to object types, system segments, or any other criteria. The Default Layer always remains, but other Layers may be created or removed, using Add & Delete. Layers may be selected directly from the list. Up & Down change the position of a Layer in the list only (Layers are not stacked, so this does not affect Tab Order or visual overlapping). All objects in a given Layer can be selected with Select. Added Layers can be given a custom Name. View turns on/off visibility of a Layer in the Layout. **NOTE:** Components cannot be selected when the current Layer is invisible. Lock prevents a Layer from being changed or selected. Lock & View may also be accessed by double-clicking on the corresponding icons within the list.

Toggle Grid

Turns Layout Grid on/off.

Toggle Ruler

Turns Layout Ruler on/off.

Bird's Eye View

Turns Bird's Eye View on/off.

Zoom In

Increases magnification of Layout in 25% increments.

Zoom Out

Decreases magnification of Layout in 25% increments.

Zoom 1:1

Returns magnification of Layout to 100%.

Zoom Level

Provides a drop-down menu of available Zoom magnifications (50% ~ 200% in 25% increments).

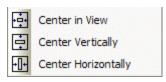
Pack Objects

Provides a drop-down menu for packing selected objects next to each other. The target location for packing left/right is the top-most selected object. The target location for packing top/bottom is the left-most selected object.

Left-clicking the icon applies the packing which was selected last.

Align Edges

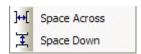
Provides a drop-down menu for aligning the edges of selected objects. The primary selected object (green handles) provides the target edges for alignment.



Left-clicking the icon applies the alignment which was selected last.

Center In View

Provides a drop-down menu for centering the Layout view on the selected objects.



Left-clicking the icon applies the centering which was selected last.

Space

Provides a drop-down menu for evenly spacing selected objects. Spacing is determined between the two most distantly spaced selected objects.

Left-clicking the icon applies the spacing which was selected last.

Make Same Size

Provides a drop-down menu for matching the dimensions of selected objects. The primary selected object (green handles) provides the target dimensions. Objects cannot be smaller than original size.

Left-clicking the icon applies the sizing which was selected last.

To Front Or Back

Provides a drop-down menu for changing the order in which overlapping objects appear on the Layout. The selected object(s) will either move in

front of overlying objects, or will move behind underlying objects.

Left-clicking the icon applies the direction which was selected last.

Network Toolbar

Network Toolbar

The Network Toolbar provides functions related to communications, configuration, maintenance, and testing of the system network (see System Network Considerations).

Network Toolbar function includes: <u>Connect</u>; <u>Disconnect</u>; <u>Connect To System</u>; <u>Disconnect From System</u>; <u>Send Configuration</u>; <u>Sync Data</u>; <u>Start Audio</u>; <u>Stop Audio</u>; and Device Maintenance.

Tools

Connect

Establishes communication with, and provides a list of,

all NEXIA devices on the network (see System Network Considerations).

Opens System Connect dialog box (see System Connect Considerations).

No system design data is transmitted or retrieved.

Disconnect

Ends communications with all NEXIA devices on the network.

See System Network Considerations.

Connect To System

Establishes communication with, and retrieves data from, selected

NEXIA systems on the network (see System Network Considerations).

Opens System Connect dialog box (see System Connect Considerations).

Password protection is then available from the <u>Tools Menu</u>.

When connected to a system, <u>Component Object Properties</u> may be changed, but system design (objects & connections) cannot.

Disconnect From System

Ends communications with selected NEXIA systems on the network. See System Network Considerations. System design data is retained in software after disconnect.

Send Configuration

Transmits system design data to selected NEXIA devices in the system. See System Network Considerations. Before data can be transmitted, a system design file (.NEX) must first be opened, then connected to a system, and have NEXIA device IP addresses assigned (see Device Maintenance). Send Configuration will automatically Compile the system design, and reset the hardware devices, before sending the new configuration.

Sync Data

Re-synchronizes the software with all connected NEXIA devices in the system.

NOTE: An 'Auto-Update' feature allows software to detect system changes, and automatically re-synchronize with the devices where changes have occurred.

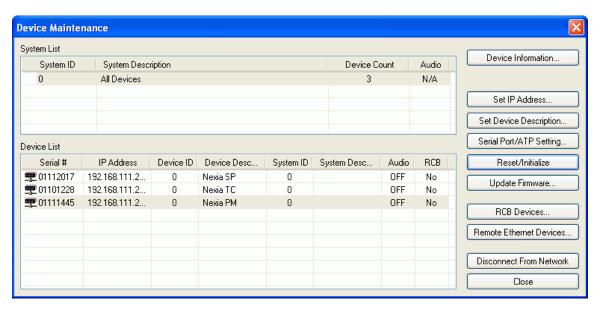
Start Audio

Enables audio signal flow within the selected system. See

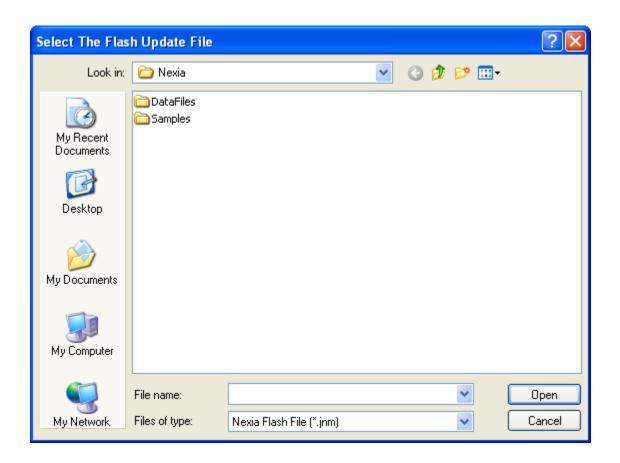
System Network Considerations. Start Audio is available
only after Send Configuration has been successfully performed.

Stop Audio

Disables audio signal flow within the selected system.

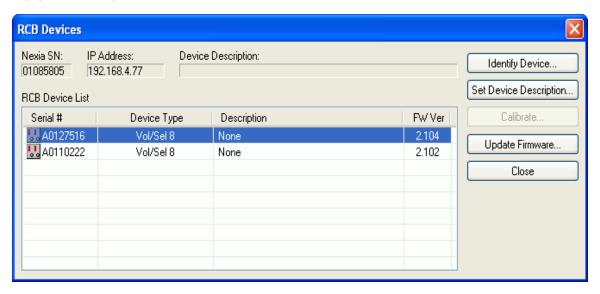

See System Network Considerations.

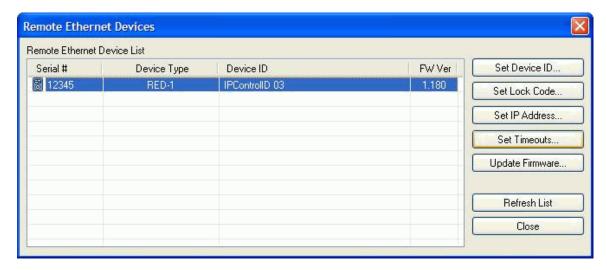
Device Maintenance


Provides an editable table of network related settings for selected NEXIA devices. Opens Device Maintenance dialog box. Device Maintenance settings include Date/Time, IP Address, Description, Serial Number, Reset/Initialize, Update Firmware, and Disconnect From Network. (See System Network Considerations.)

Device Maintenance Dialog Box

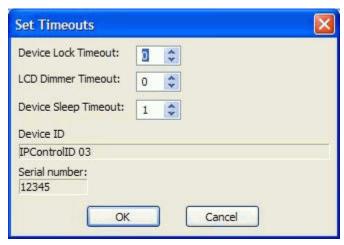
Device Information provides information (such as firmware version, input/output configuration, etc.) regarding the selected device. **Set IP Address** assigns a device IP Address such as **192.168.1.X** (where range of $X = 1 \sim 254$). The factory default IP Address is 192.168.1.101. However, IP Addresses cannot be duplicated, even in simple (NEXIA only) networks, and must be carefully managed when network topology is more complex. **Set Device Description** allows the selected device to be given a descriptive name. **Serial Port Setting** selects the baud rate for RS-232 communications (default 38,400) and allows responses to NTP commands to be suppressed. **Reset/Initialize** clears all current system design data from the selected device. This happens automatically whenever a new system design file (.NEX) is uploaded (see <u>Send Configuration</u>).


Update Firmware produces a file browser window.


When a valid firmware file is selected, a dialog window is produced that shows all discovered devices in a table with columns indicating System ID, Device IP Address, and other details for each unit. To specify a unit for updating, place a check in that unit's Update box. Buttons are provided to Select All entries and Clear All entries. Press the Update button to perform the firmware update on the selected units and Cancel to exit this window.

RCB Devices opens a list of devices connected to the Remote Control Bus of the selected NEXIA device. Identify Device causes indicators on the selected device to flash (for physical location). Set Device Description allows the selected device be given a custom name. Calibrate is enabled only if a Voltage Control Box (VCB) is the selected device (see VCB Calibration). Update Firmware allows future firmware updates to be loaded into the selected device. The information in this list (including Serial #) is used to establish proper association between the external physical controls and their corresponding component counterparts in the layout (see Equipment Table).

Remote Ethernet Devices opens a list of any NPS-1 or RED-1 remote Ethernet devices connected to the control network of the selected Nexia device.


Set Device ID allows the selected remote device to be given a name that matches that of the corresponding block in the design layout file.

Set Lock Code allows the selected remote device to be assigned password protection. During normal operation, the user will be prompted for the password before being given control access.

Set IP Address allows the selected remote device to be assigned an IP address. Use the default setting (which allows the device to obtain an IP address automatically from a DHCP server on the network) in most cases, except possibly when adding RED-1 devices to an existing Ethernet network.

When a RED-1 device is selected, the Set Timeouts button becomes active. Set Timeouts allows the Device Lock, LCD Dimmer, and Device Sleep timeouts for the RED-1 to be modified. Update Firmware allows future firmware updates to be loaded into the selected device. The information in the list (including Serial # and Device ID) is used to establish proper association between the external physical devices and their corresponding components in the layout.

Set Station ID, Set Lock Code, and Set IP Address may instead be assigned during setup of the physical devices themselves (see the Remote Ethernet Device-1 operation manual).

Standard Toolbar

Standard Toolbar

The Standard Toolbar provides file functions such as New, Open, & Save, plus additional functions such as <u>Cut</u>, <u>Copy</u>, <u>Paste</u>, <u>Undo</u>, <u>Redo</u>, <u>Print</u>, & <u>Help</u>. The Standard Toolbar also includes the Compile function, which will generate a new configuration file, while checking system layout/connections & determining DSP resource allocation. See <u>File Menu</u> and <u>Edit Menu</u> for more options.

Tools

New

Begins a new NEXIA system design file (.NEX).

Open

Opens an existing NEXIA system design file (.NEX).

Save

Saves the current NEXIA system design file (.NEX) under My Documents.

Compile

Analyzes the system design and indicates design errors.

Allocates DSP resources.

See System Compiling Considerations.

Cut

Removes the selected object(s) from the Layout, and places them in the Clipboard.

Copy

Places a copy of the selected object(s) into the Clipboard.

Paste

Places a copy of the object(s) from the Clipboard into the Layout.

Undo

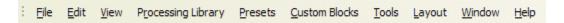
Will undo last operation.

Redo

Will redo most recent Undo operation.

Print

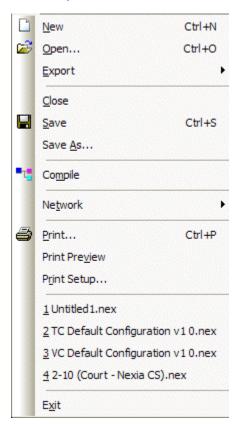
Opens a print dialog box, to adjust printer settings and print the Layout.


Help

You're looking at it.

Main Menus

Main Menus



The Main Menus provide most of the toolbar functions mentioned previously, in Basic Screen Elements, as well as several more in-depth functions. Main Menus includes the following individual menus: File; Edit; View; <a href="Processing Library; Presets; Custom Blocks; Tools; Layout; Windows; and Help. Not all of the Main Menus will be available until a new or existing file is opened. Keyboard shortcuts are shown on the menus, where applicable.

File Menu

File Menu

Select any function from the menu shown below for more information.

Menu Items

New

Begins a new NEXIA system design file (.NEX).

Open

Opens an existing NEXIA system design file (.NEX).

Export

Allows the NEXIA Layout to be exported in different file formats. DXF format is for use with CAD programs.

EMF (Enhanced MetaFile) is for insertion as a picture into documents such as Word & PowerPoint. DSP Data to Text provides signal processing data in Text file format.

Export Layout to <u>D</u>XF

Export Layout To <u>E</u>MF

Export DSP data to te<u>x</u>t

Close

Closes and saves the current NEXIA system design file.

Save

Saves the current NEXIA system design file (.NEX) under My Documents.

Save As

Saves the current NEXIA system design file (.NEX), with choice of directory location and file name.

Compile

Analyzes the system design and indicates design errors.

Allocates DSP resources.

See System Compiling Considerations.

Network

Most Network Menu items duplicate functions found in the

Network Toolbar, except for Send Control Dialog Layout Information,

which allows open (or minimized) control dialog box settings to be updated/saved to the hardware device.

See Component Object Properties and Software User Interface.

Print

Opens a print dialog box, to adjust printer settings and print the Layout.

Print Preview

Previews printing results based on Print Setup.

Print Setup

Opens a print dialog box to adjust printer settings.

Recent File

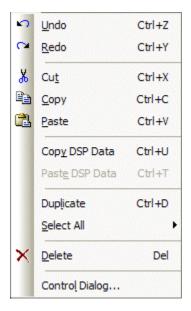
Provides a list of recently saved files for convenient access.

Exit

Closes the NEXIA software program.

Also provides prompt to save the current

NEXIA system design file if necessary.


If a file is open during Exit, that file will

automatically open at next session.

Edit Menu

Edit Menu

Select any function from the menu shown below for more information.

Menu Items

Undo

Will undo last operation.

Redo

Will redo most recent Undo operation.

Cut

Removes the selected object(s) from the Layout, and places them in the Clipboard.

Copy

Places a copy of the selected object(s) into the Clipboard.

Paste

Places a copy of the object(s) from the Clipboard into the Layout.

Copy DSP Data

Places a copy of the DSP data from the selected object into the Clipboard. DSP Data represents the current settings of that Component Object. See Component Object Properties.

DSP Data can be copied from only one Component Object at a time.

NOTE: Software now supports Copy/Paste DSP Data between objects which are of the same type, but which have different sized configurations.

Examples: 4x4 & 8x8 Matrix Mixers; 3-band & 5-band Parametric EQ.

Paste DSP Data

Places a copy of the DSP data from the Clipboard into the selected Component Object. DSP Data represents the current settings of that Component Object. See Component Object Properties.

DSP Data can be pasted simultaneously into multiple Component Objects.

NOTE: Software now supports Copy/Paste DSP Data between blocks which are of the same type, but which have different sized configurations.

Examples: 4x4 & 8x8 Matrix Mixers; 3-band & 5-band Parametric EQ.

Duplicate

Places a copy of the selected Component or Text Object directly into the Layout. Duplicate also places a copy of the object into the Clipboard. Duplicate works with only one object at a time.

Select All

Provides an easy way to select all objects on the Layout.

Also allows all objects of a specific type to be selected.

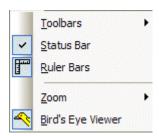
Select All <u>D</u>SP Objects
Select All <u>B</u>lock Objects
Select All <u>L</u>ine Objects
Select <u>A</u>ll Objects

Delete

Removes the selected object(s) from the Layout, without placing a copy into the Clipboard.

Control Dialog

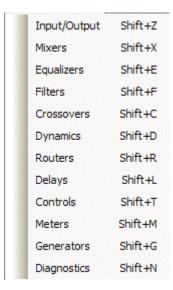
Opens a Control Dialog box for the selected Component Object.


Control Dialog boxes provide a graphic means of displaying and adjusting Component Object settings. See Component Object Properties.

View Menu

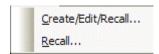
View Menu

Toolbars provides a drop-down menu to turn on/off any of the toolbars (see <u>Basic Screen Elements</u>). Also, the appearance and functionality of new and existing toolbars and menus can be 'Customized'.


Status Bar, Ruler Bars, Zoom, & Bird's Eye Viewer select those functions, as found on the <u>Layout Toolbar</u>.

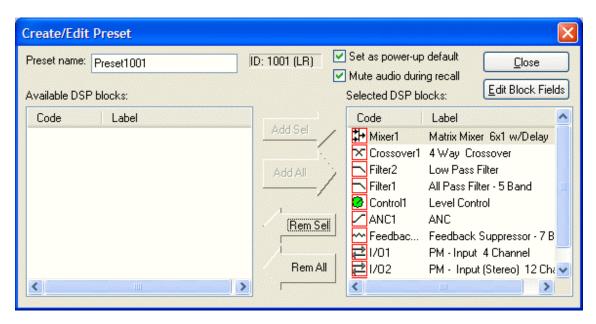
Processing Library Menu

Processing Library Menu


Provides a list of Component Object categories from the Processing Library. When a category is selected from the menu, the Processing Library opens to that category automatically.

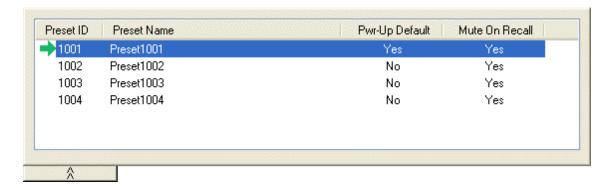
Presets Menu

Presets Menu

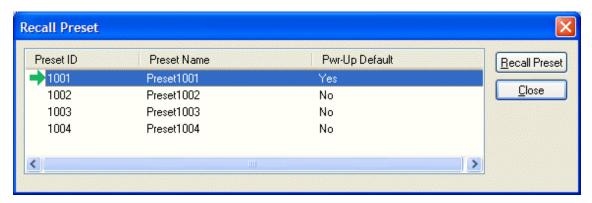

Select any function from the menu shown below for more information

Menu Items

Create/Edit/Recall


Provides the Create/Edit Preset dialog box, for creating, editing, saving, and recalling presets. Each preset can have a custom Preset Name, and will automatically be assigned a Preset ID number. A check-box is provided to assign the selected preset to be Set As Power-Up Default. This preset will automatically be recalled each time the system is powered up. A check-box is also provided to assign the selected preset to Mute Audio During Recall. If audio is not muted during recall, some processing noises may be audible. Component Objects (DSP Blocks) may be selected, and added or removed from any preset using the Add Sel, Add All, Rem Sel, and Rem All buttons. With certain components, the Edit Block Fields button will provide a matrix of checkboxes, which allows selection of very specific settings within the selected block to be affected by the preset. If only specific settings within a block are saved to a preset, then its icon will become highlighted in the list. NOTE: Presets that employ Edit Block Fields, and have half or more of the block settings selected, will occupy a much greater amount of preset memory than would a preset affecting the entire block. These features allow presets to be customized to affect Component Objects (and specific settings) individually, in groups, or as an entire system. Initially, all Component Objects in the Layout (and all their settings) will be selected and included in the preset. Individual components selected in the list become highlighted in the Layout. Right-clicking a selected component in the list allows the control dialog to be opened, the associated block to be located in the Layout, or Edit Block Fields to be accessed (if available). This makes it easy to change individual component settings within the preset being created/edited. Also, right-clicking a block in the Layout, and selecting 'Add To Last Recalled Preset', is a convenient way to add blocks to existing presets, or even update settings of blocks already in the presets.

A tab at the upper-right of the Create/Edit Preset dialog box provides additional functions. **Next ID** and **Prev ID** allow selection from a list of existing presets. **Recall** retrieves all settings stored in the selected preset. **New** selects the next available Preset ID, for creation of a new preset. **Save** will overwrite the selected Preset ID with all changes, including Preset Name. **Save As** will write changes into the next available Preset ID. **Delete** will remove the selected preset from memory. **Send** will send all saved presets to the devices in the system. **NOTE:** Be sure to use Recall before attempting to edit an existing preset. Otherwise, the preset could be overwritten with settings from a previous preset, and any settings made since it was recalled.



A tab at the lower-left of the Create/Edit Preset dialog box provides a list of existing presets. Left-clicking selects a preset. Double-clicking recalls a preset (as indicated by a green arrow to the left).

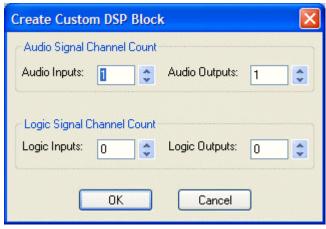
Recall

Provides the Recall Preset dialog box, for recalling existing presets. **Recall Preset** will retrieve all settings stored in the selected preset. Presets can also be recalled using components called <u>Preset Buttons</u> and <u>Remote Preset Buttons</u>, which can be placed into the Layout from <u>Controls</u> on the Object Toolbar.

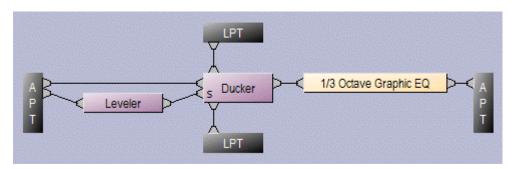
Custom Blocks Menu

Custom Blocks Menu

Multiple component objects may be merged into a single custom block.


Custom Blocks can simplify the design process by integrating frequently used component combinations, and provide password protection for intellectual property such as unique processing and component settings.

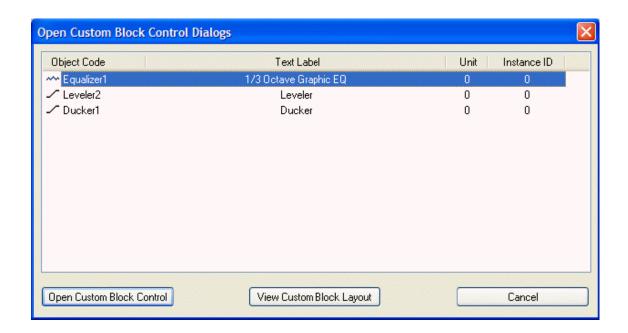
Select any function from the menu shown below for more information

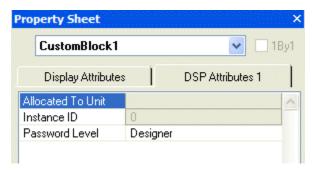

Menu Items

Create Custom Block Document

Create Custom Block Document opens a new NEX file, and a Create Custom DSP Block screen determines the quantities of audio and logic inputs/outputs necessary for the custom block. These quantities should match the combined totals from all components to be included in the custom block. Once quantities are selected, appropriate APT (Audio Pass-Through) and LPT (Logic Pass-Through) blocks are placed into the layout. The desired components are then placed within, and connected to, the APT and LPT blocks. Components may be added individually, or copied as a group from a separate NEX file.

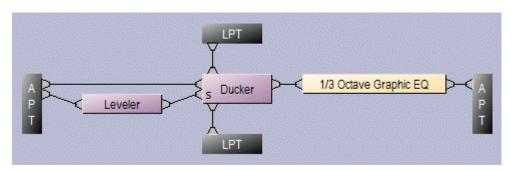
Certain components (such as NEXIA Hardware and Control Devices) cannot be placed within custom blocks. The number of components in a custom block is limited only by DSP resources available within a single hardware unit. Once the components are placed and connected, select Merge Into Custom Block from the menu.


Merge Into Custom Block



Merge Into Custom Block checks for errors (such as inappropriate connections) as it packages the components into a single block. The resulting block can then be copied into the Processing Library (and named) for use in future NEX design files. The Custom Block NEX file should also be saved as a reference for subsequent modifications.

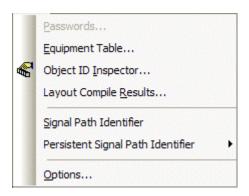
Control settings for each component within a Custom Block can be adjusted (see Component Object Properties). Double-clicking a Custom Block in a design layout produces an Open Custom Block Control Dialogs screen. **Open Custom Block Control** provides direct access to the control dialogs for selected components. **View Custom Block Layout** displays the individual components within the Custom Block, which can then be accessed normally. Control Settings are saved as part of the Custom Block NEX file.



Control settings also remain part of any Custom Block which has been copied into the Processing Library. These control settings may again be addressed once the Custom Block is placed into a new NEX design file. However, to prevent tampering with control settings, a Password Level may be specified for a Custom Block via the Property Sheet. This option is available only while working in the Custom Block NEX file.

If components or connections within a merged Custom Block require modification, then select Split Into Component Blocks from the menu. Merge and Split operations are available only while working in the Custom Block NEX file.

Split Into Component Blocks


Split Into Component Blocks allows component and connection changes to be made to a Custom Block. Merge and Split operations are available only while working in the Custom Block NEX file.

Tools Menu

Tools Menu

Select any function from the menu shown below for more information

Menu Items

Passwords

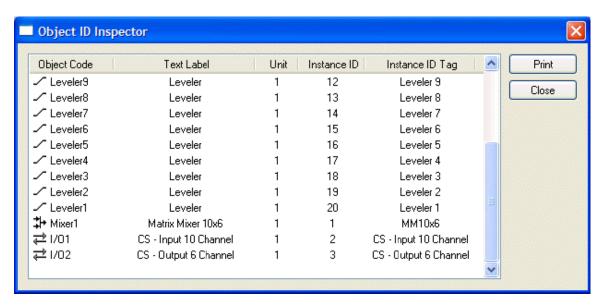
Provides the Set Passwords dialog box, for establishing password protection in selected NEXIA devices. Set Password allows up to four levels of protection, each with a unique password (6~16 characters). **Designer** level allows access to system configuration, component settings, storing/recalling presets, and password assignments. **Technician** level limits access to component settings and storing/recalling presets. **User** level limits access to recalling presets only. However, Level Control and Meter dialog boxes can be minimized for User access (see <u>Customizing Component Objects</u>). **Guest** level limits access strictly to connection and viewing only.

NOTE: You must first <u>Send Configuration</u> to a device before a Password can be assigned. Passwords cannot be assigned to non-configured devices or design layouts.

Equipment Table

Provides a table of NEXIA devices used in the system design. Devices are automatically added to the Equipment Table whenever <u>CS</u>, <u>PM</u>, <u>SP</u>, <u>VC</u>, or <u>TC</u> blocks are placed into the Layout. When <u>connected to the network</u>, specific hardware devices may be chosen (by Serial #) for use in the system. When <u>connected to the system</u>, Serial # and Device Description Label becomes 'read-only' information.

An **RCB** tab at the lower-left of the Equipment Table dialog box provides an editable table of devices connected to the <u>Remote Control Bus</u> of the NEXIA devices in the system design. This table is used to establish proper association between external physical controls and their corresponding component counterparts in the layout. Each **DevID** (control component) should be matched to an appropriate **Serial #** (physical control). The DevID number can be found in the right corner of control component objects in the layout, when 'Display Device Assignment in DSP Block Info Field' is selected from <u>Display Options</u>. Serial # and Device Description Label information can be found for the physical controls using <u>Device Maintenance</u>.

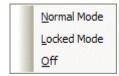


Object Inspector

Provides a list of all objects within the Layout, along with their Object Codes,

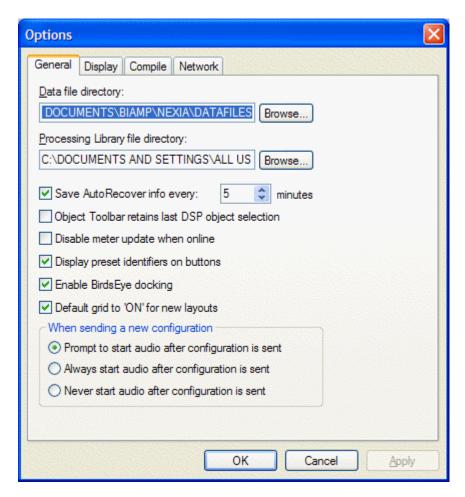
Text Labels, Unit numbers, Instance ID numbers, and Instance ID Tags.

Layout Compile Results


Provides the most recent Compile results. This information may be viewed at any time.

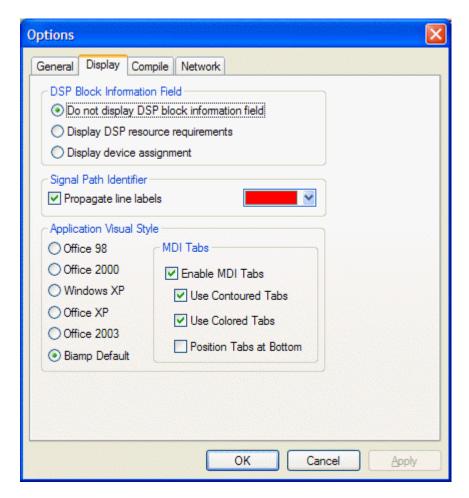
Signal Path Identifier

Provides a temporary color-coded identification of all signal paths (Lines) which are associated with a selected Line Object. See example below, where the selected input is shown as being routed to three outputs. Signal Path Identifier is represented by a thin dashed red line. However, the Signal Path Identifier color may be changed in Display Options. When using Signal Path Identifier on a compiled design, propagation delay will appear in the Status Bar. **Persistent** **Signal Path Identifier** is available in Normal Mode (follows subsequent line selections), Locked Mode (remains on original line selection), or Off (temporary selection). If the selected Line Object includes identifying text (see Line Property Sheet), that text will be temporarily imposed on all lines being indicated by Signal Path Identifier.

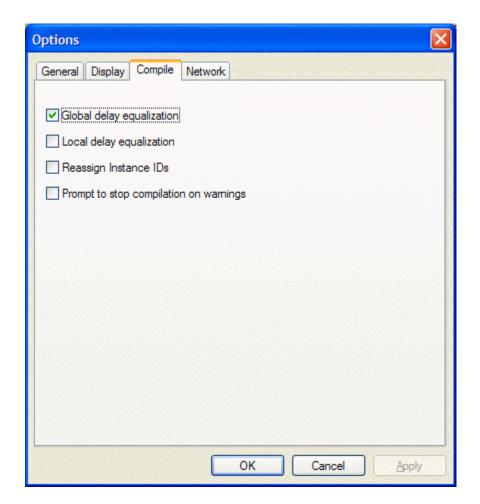

Options

Allows global options to be selected, which affect software behavior. An Options dialog box appears, with four tabs: General; Display; Compile; and Network.

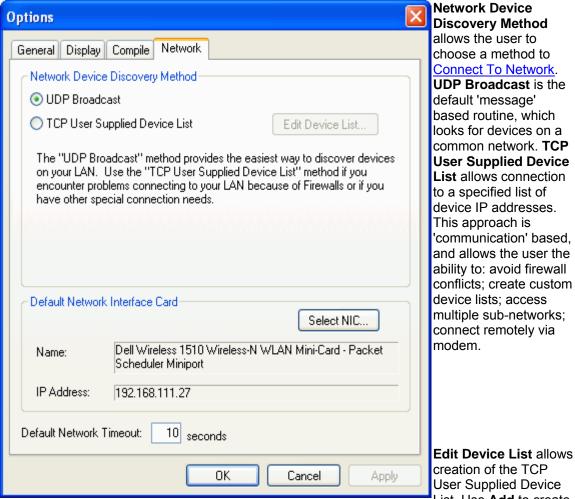
- see General Options
- see Display Options
- see Compile Options
- see Network Options


General Options

Allows Data Files (system designs) and Processing Libraries (Component Objects) to be saved to specified directory locations. Allows Save AutoRecover time to be adjusted or disabled. Allows most recent Component Object selection to be retained, for repeated placement into Layout. Allows Meter activity to be disabled (locked), to reduce network data traffic. Allows Preset Buttons to display identifier numbers, or simply the word 'Recall'. Allows docking capability of Bird's Eye View to be enabled. Allows default Grid "ON" for new Layouts to be disabled. Allows Start Audio to be prompted, automatic, or manual when sending new configuration.


Display Options

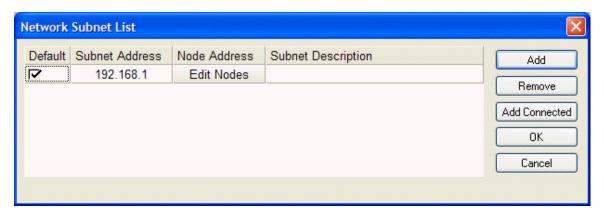
Allows DSP Blocks (Component Objects) to display Device Assignment numbers, as determined by Compile. (Device Assignments can be changed in the Property Sheet.) A second option is to display DSP Resource Requirements, which indicates the block's DSP usage as a percentage of total DSP resources available within a single hardware unit. Allows color of Signal Path Identifier to be changed. Allows selection of optional Application Visual Styles.

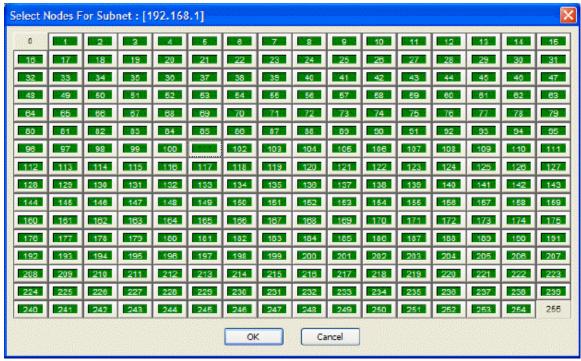


Compile Options

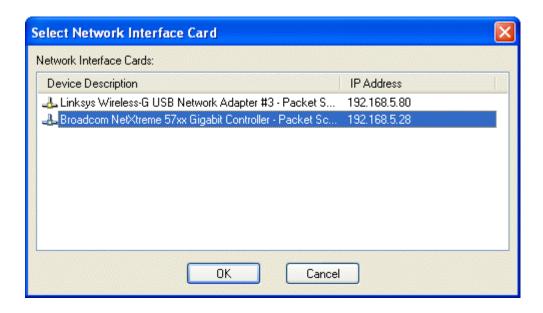
Allows Global Delay Equalization to be disabled system-wide (see System Compiling Considerations). Allows Local Delay Equalization to be enabled for I/O blocks which have Global Delay Equalization turned off (provides localized delay equalization for multi-input DSP blocks such as mixers). Allows automatic re-assignment of Instance IDs during Compile or Send Configuration. Allows Compile function to be stopped if warning occurs.

Network Options network Options


looks for devices on a common network. TCP **User Supplied Device** List allows connection to a specified list of device IP addresses. This approach is 'communication' based. and allows the user the ability to: avoid firewall conflicts; create custom device lists: access multiple sub-networks; connect remotely via


creation of the TCP User Supplied Device List. Use **Add** to create a new entry, doubleclick under Subnet Address, and enter only the first three sets of numbers. Then click Edit Nodes and select the appropriate final set of numbers for the intended device(s).

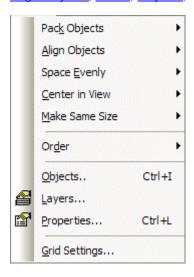
Default Network Timeout is a userdefinable period of time


after which software will timeout if it does not

get a response from firmware.

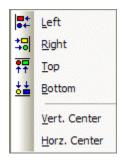
Default Network Interface Card allows selection of a specific network interface card (NIC), when multiple cards are available on the computer being used to run Nexia software.

Default Network Timeout is a user-definable period of time after which software will time out if it does not get a response from firmware. If connected to the network at the time of changing the Default Network Timeout, changes are not applied until the software has disconnected from the network and reconnected.


Layout Menu

Layout Menu

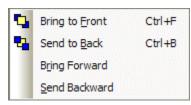
Most Layout Menu items duplicate functions found in the


Layout Toolbar. However, some exceptions are as follows:

Align Objects; Order; Objects; and Grid Settings.

Menu Items

Align Objects

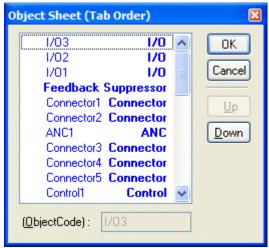


Align Objects provides Vertical Center &

Horizontal Center functions, in addition to the

Align Edges functions found on the Layout Toolbar.

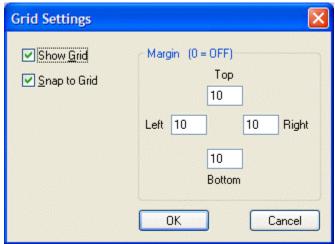
Order



Order provides Bring Forward & Send Backward

functions, in addition to the To Front Or Back

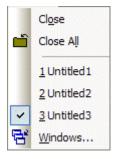
functions found on the Layout Toolbar.


Object Sheet

Provides a list of all objects within the Layout.

Normally, objects can be selected sequentially using the *Tab* key. The Object Sheet allows the order of this *Tab* selection to be changed. Objects may be selected directly from the list. When an object is selected, **Up** and **Down** change the Tab Order position of that object.

Grid Settings



Grid Settings allows the Layout Grid to be customized. **Show Grid** turns the Grid on/off. **Snap To Grid** forces the upper-left corner of objects to align with grid-marks. **Margin** changes the location (in pixels) of the green, dotted guidelines (initially found near the edges of the Layout).

Window Menu

Window Menu

Multiple Layouts (system design files) may be open at the same time. Only one Layout will be active at a time (as indicated by tabs). Close will close the active Layout. Close All will close all Layouts. A list of open Layouts is provided for selection. Windows provides a list of open Layouts, with Save, Close, and Activate options.

Help Menu

Help Menu

Provides NEXIA Help Topics and About NEXIA information.

Status Bar

Status Bar

Ready System connected HPS 0.37

The Status Bar, along the bottom of the main screen, provides system information. The left side of the Status Bar (shown above) indicates system status, tool tips, instance IDs, or flash update information. The center of the Status Bar (also shown above) indicates system/network connection status (with progress bar), session privilege level, and device DSP usage. The right side of the Status Bar (shown below) indicates total number of system objects, number of objects selected, Layer status, last selected object location (pixels), and last selected object size (pixels).

33 Objects	0 Selected	⊕ Default	0.0	16384x16384
33 Objects	0 Selected	. Delault	0,0	T0201XT0201

Keyboard Shortcuts

Keyboard Shortcuts

KEY STROKES	COMMAND			
file management				
Ctrl + N	new document			
Ctrl + O	open saved document			
Ctrl + S	save document			
Ctrl + Tab or Ctrl + F6	next document			
Ctrl + Shift + Tab or Ctrl + Shift + F6	previous document			
Ctrl + F4	close document			
Alt + F4	close application			
cut/copy/paste – for selected object(s)				
Ctrl + C	copy objects			
Ctrl + V	paste objects			
Ctrl + D	duplicate object			
Ctrl + U	copy DSP data			
Ctrl + T	paste DSP data			

Ctrl + X cut objects (copy) Del delete objects (no copy) Alt + drag selected objects duplicate (to Layout or Library) Layout Ctrl + F move object to front Ctrl + B move object to back Ctrl + G show/hide Grid undo/redo/print Ctrl + Z undo Ctrl + Y redo Ctrl + P print tools Ctrl + L **Property Sheet** Ctrl + I **Object Sheet** F2 toggle Object Toolbar Shift + F2 toggle Layout Toolbar Ctrl + A + select object display Instance ID (Status Bar) Alt + drag within Layout Zoom to target F1 Help Processing Library

 $\begin{array}{ccc} \text{Shift} + Z & & \text{Input/Output} \\ \\ \text{Shift} + X & & \text{Mixers} \\ \\ \text{Shift} + E & & \text{Equalizers} \\ \\ \\ \text{Shift} + F & & \text{Filters} \\ \end{array}$

Shift + C Crossovers Shift + D **Dynamics** Shift + R Routers Shift + L Delays Shift + T Controls Shift + M Meters Shift + G Generators Shift + N Diagnostics

Shift + 1~0 Custom Processing Libraries 1~10

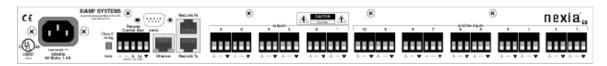
line drawing - for a selected line

Alt + click on line add bend point

Shift + Alt + click on bend point delete bend point

Shift + drag line bus move all lines in bus

Shift + draw line fan-out to multiple nodes


Grid

Ctrl temporary reversal of Snap To Grid

Component Objects

CS

CS Hardware

Mic/Line Inputs: These ten plug-in barrier strip connectors provide balanced input for microphone or line level signals. For unbalanced input, wire high to (+) and ground to both (▼) & (-). Settings for these inputs are accessed by double-clicking the <u>CS Input 10 Channel</u> block in the Layout.

Outputs: These six plug-in barrier strip connectors provide balanced output of microphone or line level signals. For unbalanced output, wire high to (+) and ground to (▼), leaving (-) un-connected. Settings for these outputs are accessed by double-clicking the CS Output 6 Channel block in the Layout.

NexLink: These two RJ45 jacks provide the NexLink Tx (transmit) and Rx (receive) connections. Up to four NEXIA devices may be linked together to share digital audio signals. Tx on one NEXIA device is connected to RX on the next device. NexLink utilizes straight through shielded CAT5 cabling, with a maximum recommended length of 5 meters per cable. When multiple NEXIA devices are placed in the Layout, NexLink blocks allow routing of digital audio between linked devices.

Ethernet: All NEXIA devices use Ethernet, both for system programming and control. Programming is accomplished using the NEXIA software provided with each unit. NEXIA software is for PC computers, with Windows® XP Professiona/Vistal operating system required. The PC computer must have a network card installed, which supports 10/100BaseT Ethernet. A 10/100BaseT Ethernet switch (not hub) is required when networking multiple units (see System Network Considerations). Ethernet utilizes standard CAT5 cabling, which has a specified maximum length of 100 meters. However, Ethernet switches which provide fiber-optic interface can be used to extend the physical distance between units within a network.

Serial Control Port: After initial programming and configuration, NEXIA systems may be controlled by RS-232 or Telnet communications from third-party control systems such as AMX® or Crestron®, using the Serial Control Port. Also, external devices may be controlled via the Serial Control Port, by utilizing Command String blocks within the NEXIA system design.

Remote Control Bus: The Remote Control Bus provides connection for <u>Volume 8</u>, <u>Select 8</u>, <u>Volume/Select 8</u>, <u>Voltage Control Box</u>, and <u>Logic Box</u> external control devices (see <u>Remote Control Bus</u> for more information).

Power Entrance: The Power Entrance provides connection for the appropriate power cord (included with unit). An internal universal switching power supply accepts 100~240VAC @ 50/60Hz, with a maximum power consumption of 65 Watts.

Front Panel Indicators: The Front Panel Indicators (I/O, Com, & Status) are 2-color LEDs.

The following table lists their behavior:

All LEDs green Normal operating state. Configuration was successful (if applicable).

Device is in a stable state awaiting commands.

I/O LED red Internal audio hardware error.

Com LED red Serial Port error.

Ethernet error.

CAN Bus error.

No IP address defined (cleared by setting IP address).

Status LED red Configuration error.

Last configuration unsuccessful (cleared by 'reset/initializing' the

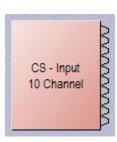
device). Operating systems resource error.

File system error.

DSP error.

All LEDs blinking Operating system is not executing. Device must be power cycled.

Status LED blinking The firmware has attempted to perform an illegal operation. Device

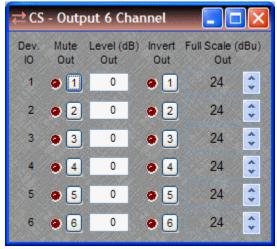

must be power cycled.

Control Dialogs

CS Input 10 Channel

NEXIA **CS** hardware is always represented in the Layout as two separate blocks, one for input connections and one for output connections. Between these blocks can be placed virtually any of the other available NEXIA mixing, routing, and processing blocks (component objects). Like other component objects, NEXIA CS blocks can be placed into the Layout either from the Processing Library or from the Object Toolbar. To access Input 10 Channel settings, double-click over the corresponding block in the Layout. This opens a Control Dialog Box which provides all available settings.

Device IO indicates which hardware input is associated with that software channel. Gain In compensates for different input levels (mic or line), and should be set so Peak In flashes only occasionally (6dB headroom). Phan Pwr assigns +48 Volt phantom power to the input for condenser microphones. Mute In turns the input signal on/off. Level (dB) In adjusts the relative input volume. Invert In reverses the polarity of the input signal.

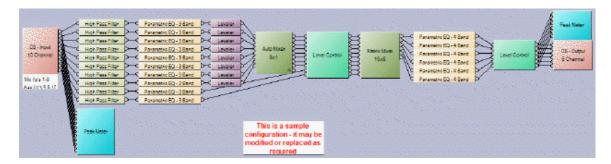

Right-clicking over certain settings will provide a menu of additional options.

Each NEXIA CS comes preconfigured from the factory with a default system design. If you wish to load your own custom designed configuration you will need to reset/initialize the unit(s) first.

CS Output 6 Channel

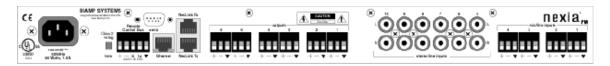
NEXIA **CS** hardware is always represented in the Layout as two separate blocks, one for input connections and one for output connections. Between these blocks can be placed virtually any of the other available NEXIA mixing, routing, and processing blocks (component objects). Like other component objects, NEXIA CS blocks can be placed into the Layout either from the <u>Processing Library</u> or from the <u>Object Toolbar</u>. To access **Output 6 Channel** settings, double-click over the corresponding block in the Layout. This opens a Control Dialog Box which provides all available settings.

Device IO indicates which hardware output is associated with that software channel. Mute Out turns the output signal on/off. Level (dB) Out adjusts the relative output volume. Invert Out reverses the polarity of the output signal. Full Scale (dBu) Out selects the appropriate maximum output reference level (mic or line).


Right-clicking over certain settings will provide a menu of additional options.

Each NEXIA CS comes pre-configured from the factory with a <u>default system design</u>. If you wish to load your own custom designed configuration you will need to <u>reset/initialize</u> the unit(s) first.

CS Default Configuration


Conference System

Each Nexia device comes pre-configured from the factory with a default system design. The factory default configuration for a NEXIA CS is a 'conference system' with 8 automixer mic inputs and 2 program line inputs feeding a matrix to 6 outputs (see design layout below). This "CS Default Configuration.NEX" file can be found under Sample Files on the NEXIA software CD. If you wish to load your own custom designed configuration you will need to reset/initialize the unit(s) first.

PM

PM Hardware

Mic/Line Inputs: These four plug-in barrier strip connectors provide balanced input for microphone or line level signals. For unbalanced input, wire high to (+) and ground to both (τ) & (-). Settings for these inputs are accessed by double-clicking the PM Input 4 Channel block in the Layout.

Stereo Line Inputs: These six RCA jack pairs provide unbalanced input for stereo line level signals. Settings for these inputs are accessed by double-clicking the PM Input (Stereo) 12 Channel block in the Layout.

Outputs: These six plug-in barrier strip connectors provide balanced output of line level signals. For unbalanced output, wire high to (+) and ground to (▼), leaving (-) un-connected. Settings for these outputs are accessed by double-clicking the PM Output (Stereo) 6 Channel block in the Layout.

NexLink: These two RJ45 jacks provide the NexLink Tx (transmit) and Rx (receive) connections. Up to four NEXIA devices may be linked together to share digital audio signals. Tx on one NEXIA device is connected to RX on the next device. NexLink utilizes straight through shielded CAT5 cabling, with a maximum recommended length of 5 meters per cable. When multiple NEXIA devices are placed in the Layout, NexLink blocks allow routing of digital audio between linked devices.

Ethernet: All NEXIA devices use Ethernet, both for system programming and control. Programming is accomplished using the NEXIA software provided with each unit. NEXIA software is for PC computers, with Windows® XP Professiona/Vistal operating system required. The PC computer must have a network card installed, which supports 10/100BaseT Ethernet. A 10/100BaseT Ethernet switch (not hub) is required when networking multiple units (see System Network Considerations). Ethernet utilizes standard CAT5 cabling, which has a specified maximum length of 100 meters. However, Ethernet switches which provide fiber-optic interface can be used to extend the physical distance between units within a network.

Serial Control Port: After initial programming and configuration, NEXIA systems may be controlled by RS-232 or Telnet communications from third-party control systems such as AMX® or Crestron®, using the Serial Control Port. Also, external devices may be controlled via the Serial Control Port, by utilizing Command String blocks within the NEXIA system design.

Remote Control Bus: The Remote Control Bus provides connection for <u>Volume 8</u>, <u>Select 8</u>, <u>Volume/Select 8</u>, <u>Voltage Control Box</u>, and <u>Logic Box</u> external control devices (see <u>Remote Control Bus</u> for more information).

Power Entrance: The Power Entrance provides connection for the appropriate power cord (included with unit). An internal universal switching power supply accepts 100~240VAC @ 50/60Hz, with a maximum power consumption of 65 Watts.

Front Panel Indicators: The Front Panel Indicators (I/O, Com, & Status) are 2-color LEDs.

The following table lists their behavior:

All LEDs green Normal operating state. Configuration was successful (if applicable).

Device is in a stable state awaiting commands.

I/O LED red Internal audio hardware error.

Com LED red Serial Port error.

Ethernet error.

CAN Bus error.

No IP address defined (cleared by setting IP address).

Status LED red Configuration error.

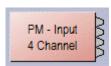
Last configuration unsuccessful (cleared by 'reset/initializing' the

device). Operating systems resource error.

File system error.

DSP error.

All LEDs blinking Operating system is not executing. Device must be power cycled.


Status LED blinking The firmware has attempted to perform an illegal operation. Device

must be power cycled.

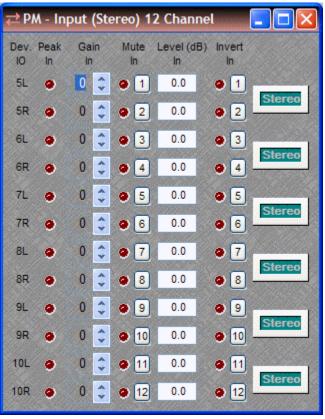
Control Dialogs

PM Input 4 Channel

NEXIA **PM** hardware is always represented in the Layout as three separate blocks, two for input connections and one for output connections. Between these blocks can be placed virtually any of the other available NEXIA mixing, routing, and processing blocks (component objects). Like other component objects, NEXIA PM blocks can be placed into the Layout either from the

<u>Processing Library</u> or from the <u>Object Toolbar</u>. To access **Input 4 Channel** settings, double-click over the corresponding block in the Layout. This opens a Control Dialog Box which provides all available settings.

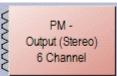
Device IO indicates which hardware input is associated with that software channel. Gain In compensates for different input levels (mic or line), and should be set so Peak In flashes only occasionally (6dB headroom). Phan Pwr assigns +48 Volt phantom power to the input for condenser microphones. Mute In turns the input signal on/off. Level (dB) In adjusts the relative input volume. Invert In reverses the polarity of the input signal.


Right-clicking over certain settings will provide a menu of additional options.

Each NEXIA PM comes preconfigured from the factory with a <u>default system design</u>. If you wish to load your own custom designed configuration you will need to <u>reset/initialize</u> the unit(s) first.

PM Input (Stereo) 12 Channel

NEXIA **PM** hardware is always represented in the Layout as three separate blocks, two for input connections and one for output connections. Between these blocks can be placed virtually any of the other available NEXIA mixing, routing, and processing blocks (component objects). Like other component objects, NEXIA PM blocks can be placed into the Layout either from the <u>Processing Library</u> or from the <u>Object Toolbar</u>. To access **Input** (Stereo) 12 Channel settings, double-click over the corresponding block in the Layout. This opens a Control Dialog Box which provides all available settings.


Device IO indicates which hardware input is associated with that software channel. Gain In compensates for different input levels, and should be set so Peak In flashes only occasionally (6dB headroom). Mute In turns the input signal on/off. Level (dB) In adjusts the relative input volume. Invert In reverses the polarity of the input signal. Stereo combines the Level (dB) In adjustment for the associated left & right inputs.

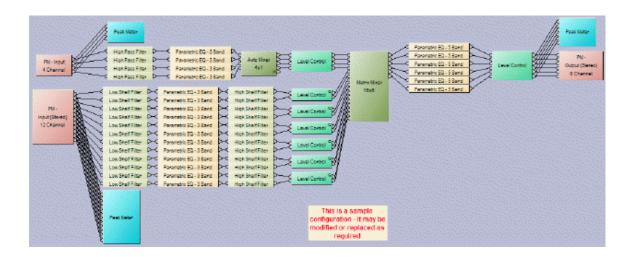
Right-clicking over certain settings will provide a menu of additional options.

Each NEXIA PM comes pre-configured from the factory with a <u>default system</u> <u>design</u>. If you wish to load your own custom designed configuration you will need to <u>reset/initialize</u> the unit(s) first.

PM Output (Stereo) 6 Channel

NEXIA **PM** hardware is always represented in the Layout as three separate blocks, two for input connections and one for output connections. Between these blocks can be placed virtually any of the other available NEXIA mixing, routing, and processing blocks (component objects). Like other component objects, NEXIA PM blocks can be placed into the Layout either from the Processing Library or from the Object Toolbar. To access Output (Stereo) 6 Channel settings, double-click over the corresponding block in the Layout. This opens a Control Dialog Box which provides all available settings.

Device IO indicates which hardware output is associated with that software channel. Mute Out turns the output signal on/off. Level (dB) Out adjusts the relative output volume. Invert Out reverses the polarity of the output signal. Full Scale (dBu) Out selects the appropriate maximum output reference level. Stereo combines the Level (dB) Out and Full Scale (dBu) Out adjustments for the associated outputs.


Right-clicking over certain settings will provide a menu of additional options.

Each NEXIA PM comes pre-configured from the factory with a <u>default system</u> <u>design</u>. If you wish to load your own custom designed configuration you will need to reset/initialize the unit(s) first.

PM Default Configuration

Presentation Mixer

Each Nexia device comes pre-configured from the factory with a default system design. The factory default configuration for a NEXIA PM is a 'presentation mixer' with 4 automixer mic inputs and 6 stereo program line inputs feeding a matrix to 6 mono / 3 stereo outputs (see design layout below). This "PM Default Configuration.NEX" file can be found under Sample Files on the NEXIA software CD. If you wish to load your own custom designed configuration you will need to reset/initialize the unit(s) first.

SP

SP Hardware

Inputs: These four plug-in barrier strip connectors provide balanced input for line level signals. For unbalanced input, wire high to (+) and ground to both (τ) & (-). Settings for these inputs are accessed by double-clicking the <u>SP Input 4 Channel</u> block in the Layout.

Outputs: These eight plug-in barrier strip connectors provide balanced output of line level signals. For unbalanced output, wire high to (+) and ground to (▼), leaving (-) un-connected. Settings for these outputs are accessed by double-clicking the SP Output 8 Channel block in the Layout.

NexLink: These two RJ45 jacks provide the NexLink Tx (transmit) and Rx (receive) connections. Up to four NEXIA devices may be linked together to share digital audio signals. Tx on one NEXIA device is connected to RX on the next device. NexLink utilizes straight through shielded CAT5 cabling, with a maximum recommended length of 5 meters per cable. When multiple NEXIA devices are placed in the Layout, NexLink blocks allow routing of digital audio between linked devices.

Ethernet: All NEXIA devices use Ethernet, both for system programming and control. Programming is accomplished using the NEXIA software provided with each unit. NEXIA software is for PC computers, with Windows® XP Professiona/Vista operating system required. The PC computer must have a network card installed, which supports 10/100BaseT Ethernet. A 10/100BaseT Ethernet switch (not hub) is required when networking multiple units (see System Network Considerations). Ethernet utilizes standard CAT5 cabling, which has a specified maximum length of 100 meters. However, Ethernet switches which provide fiber-optic interface can be used to extend the physical distance between units within a network.

Serial Control Port: After initial programming and configuration, NEXIA systems may be controlled by RS-232 or Telnet communications from third-party control systems such as AMX® or Crestron®, using the Serial Control Port. Also, external devices may be controlled via the Serial Control Port, by utilizing Command String blocks within the NEXIA system design.

Remote Control Bus: The Remote Control Bus provides connection for <u>Volume 8</u>, <u>Select 8</u>, <u>Volume/Select 8</u>, <u>Voltage Control Box</u>, and <u>Logic Box</u> external control devices (see <u>Remote Control Bus</u> for more information).

Power Entrance: The Power Entrance provides connection for the appropriate power cord (included with unit). An internal universal switching power supply accepts 100~240VAC @ 50/60Hz, with a maximum power consumption of 65 Watts.

Front Panel Indicators: The Front Panel Indicators (I/O, Com, & Status) are 2-color LEDs.

The following table lists their behavior:

All LEDs green Normal operating state. Configuration was successful (if applicable).

Device is in a stable state awaiting commands.

I/O LED red Internal audio hardware error.

Com LED red Serial Port error.

Ethernet error.

CAN Bus error.

No IP address defined (cleared by setting IP address).

Status LED red Configuration error.

Last configuration unsuccessful (cleared by 'reset/initializing' the

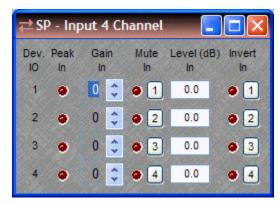
device). Operating systems resource error.

File system error.

DSP error.

All LEDs blinking Operating system is not executing. Device must be power cycled.

Status LED blinking The firmware has attempted to perform an illegal operation. Device

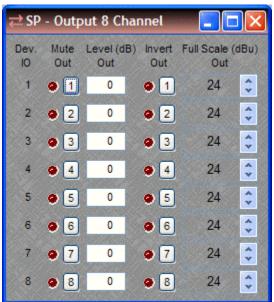

must be power cycled.

Control Dialogs

SP Input 4 Channel

NEXIA **SP** hardware is always represented in the Layout as two separate blocks, one for input connections and one for output connections. Between these blocks can be placed virtually any of the other available NEXIA mixing, routing, and processing blocks (component objects). Like other component objects, NEXIA SP blocks can be placed into the Layout either from the Processing Library or from the Object Toolbar. To access Input 4 Channel settings, double-click over the corresponding block in the Layout. This opens a Control Dialog Box which provides all available settings.

Device IO indicates which hardware input is associated with that software channel. **Gain In** compensates for different input levels, and should be set so **Peak In** flashes only occasionally (6dB headroom). **Mute In** turns the input signal on/off. **Level (dB) In** adjusts the relative input volume. **Invert In** reverses the polarity of the input signal.

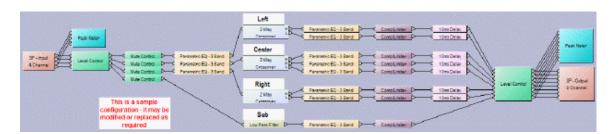

Right-clicking over certain settings will provide a menu of additional options.

Each NEXIA SP comes pre-configured from the factory with a <u>default system design</u>. If you wish to load your own custom designed configuration you will need to <u>reset/initialize</u> the unit(s) first.

SP Output 8 Channel

NEXIA **SP** hardware is always represented in the Layout as two separate blocks, one for input connections and one for output connections. Between these blocks can be placed virtually any of the other available NEXIA mixing, routing, and processing blocks (component objects). Like other component objects, NEXIA SP blocks can be placed into the Layout either from the Processing Library or from the Object Toolbar. To access Output 8 Channel settings, double-click over the corresponding block in the Layout. This opens a Control Dialog Box which provides all available settings.

Device IO indicates which hardware output is associated with that software channel. **Mute Out** turns the output signal on/off. **Level (dB) Out** adjusts the relative output volume. **Invert Out** reverses the polarity of the output signal. **Full Scale (dBu) Out** selects the appropriate maximum output reference level.


Right-clicking over certain settings will provide a menu of additional options.

Each NEXIA SP comes pre-configured from the factory with a <u>default system design</u>. If you wish to load your own custom designed configuration you will need to <u>reset/initialize</u> the unit(s) first.

SP Default Configuration

Speaker Processor

Each Nexia device comes pre-configured from the factory with a default system design. The factory default configuration for a NEXIA SP is a 'speaker processor' with 4 line inputs feeding outputs with processing for 4 multi-component speaker systems (see design layout below). This "SP Default Configuration.NEX" file can be found under Sample Files on the NEXIA software CD. If you wish to load your own custom designed configuration you will need to reset/initialize the unit(s) first.

VC

VC Hardware

AEC Inputs: These eight plug-in barrier strip connectors provide balanced input for microphone or line level signals, and include selectable acoustic echo cancellation and background noise reduction. For unbalanced input, wire high to (+) and ground to both (▼) & (-). Settings for these inputs are accessed by double-clicking the <u>VC - AEC Input 8 Channel</u> (or <u>VC - AEC Ref 8</u> Channel) blocks, and the optional <u>VC - Pre-AEC 8 Channel</u> block, in the Layout.

Mic/Line Inputs: These two plug-in barrier strip connectors provide balanced input for microphone or line level signals. For unbalanced input, wire high to (+) and ground to both ($\overline{}$) & (-). Settings for these inputs are accessed by double-clicking the VC - Input 2 Channel block in the Layout.

Codec Input: This plug-in barrier strip connector provides a balanced input for line-level audio signals from a codec. For unbalanced input, wire high to (+) and ground to both (▼) & (-). Settings for this input are accessed by double-clicking the VC - Codec In 1 Channel block in the Layout.

Codec Output: This plug-in barrier strip connector provides a balanced output for line-level audio signals to a codec. For unbalanced input, wire high to (+) and ground to both (τ) & (-). Settings for this input are accessed by double-clicking the VC - Codec Out 1 Channel block in the Layout.

Outputs: These four plug-in barrier strip connectors provide balanced output of microphone or line level signals. For unbalanced output, wire high to (+) and ground to (▼), leaving (-) unconnected. Settings for these outputs are accessed by double-clicking the VC - Output 4 Channel block in the Layout.

NexLink: These two RJ45 jacks provide the NexLink Tx (transmit) and Rx (receive) connections. Up to four NEXIA devices may be linked together to share digital audio signals. Tx on one NEXIA device is connected to RX on the next device. NexLink utilizes straight through shielded CAT5 cabling, with a maximum recommended length of 5 meters per cable. When multiple NEXIA devices are placed in the Layout, NexLink blocks allow routing of digital audio between linked devices.

Ethernet: All NEXIA devices use Ethernet, both for system programming and control. Programming is accomplished using the NEXIA software provided with each unit. NEXIA software is for PC computers, with Windows® XP Professiona/Vista operating system required. The PC computer must have a network card installed, which supports 10/100BaseT Ethernet. A 10/100BaseT Ethernet switch (not hub) is required when networking multiple units (see System Network Considerations). Ethernet utilizes standard CAT5 cabling, which has a specified maximum length of 100 meters. However, Ethernet switches which provide fiber-optic interface can be used to extend the physical distance between units within a network.

Serial Control Port: After initial programming and configuration, NEXIA systems may be controlled by <u>RS-232 or Telnet</u> communications from third-party control systems such as AMX® or Crestron®, using the Serial Control Port. Also, external devices may be controlled via the Serial Control Port, by utilizing <u>Command String</u> blocks within the NEXIA system design.

Remote Control Bus: The Remote Control Bus provides connection for <u>Volume 8</u>, <u>Select 8</u>, <u>Volume/Select 8</u>, <u>Voltage Control Box</u>, and <u>Logic Box</u> external control devices (see <u>Remote Control Bus</u> for more information).

Power Entrance: The Power Entrance provides connection for the appropriate power cord (included with unit). An internal universal switching power supply accepts 100~240VAC @ 50/60Hz, with a maximum power consumption of 65 Watts.

Front Panel Indicators: The Front Panel Indicators (I/O, Com, & Status) are 2-color LEDs.

The following table lists their behavior:

All LEDs green Normal operating state. Configuration was successful (if applicable).

Device is in a stable state awaiting commands.

I/O LED red Internal audio hardware error.

Com LED red Serial Port error.

Ethernet error.

CAN Bus error.

No IP address defined (cleared by setting IP address).

Status LED red Configuration error.

Last configuration unsuccessful (cleared by 'reset/initializing' the

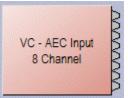
device). Operating systems resource error.

File system error.

DSP error.

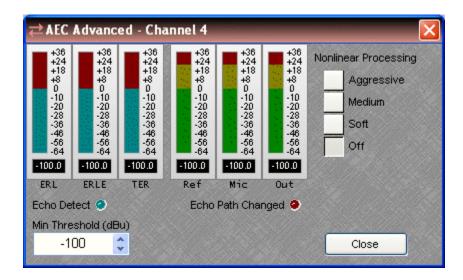
All LEDs blinking Operating system is not executing. Device must be power cycled.

Status LED blinking


The firmware has attempted to perform an illegal operation. Device must be power cycled.

Control Dialogs

VC - AEC Input 8 Channel



NEXIA **VC** hardware is represented in the Layout with as many as seven separate blocks. Between these blocks can be placed virtually any of the other available NEXIA mixing, routing, and processing blocks (component objects). Like other component objects, NEXIA VC blocks can be placed into the Layout either from the <u>Processing Library</u> or from the <u>Object Toolbar</u>. To access **VC – AEC Input 8 Channel** settings, double-click over the corresponding block in the Layout. This opens a Control Dialog Box which provides all available settings.

Device IO indicates which hardware input is associated with that software channel. **Gain In** compensates for different input levels (mic or line), and should be set so **Peak In** flashes only occasionally (6dB headroom). **Phan Pwr** assigns +48 Volt phantom power to the input for condenser microphones. **Mute In** turns the input signal on/off. **Level (dB) In** adjusts the relative input volume. **Invert In** reverses the polarity of the input signal. **AEC** turns on/off acoustic echo cancellation. **Adv** opens an Advanced dialog. **Noise Reduction In** selects the amount of background noise reduction to be applied (6~15dB).

Each channel of AEC has an Advanced dialog box. **ERL** (Echo Return Loss) shows the level difference between a signal at the speaker output (AEC Ref) and that same signal as picked up at the mic (AEC Input). **ERLE** (Echo Return Loss Enhancement) indicates the amount of processing being applied on that channel. **TER** (Total Echo Reduction) shows the combined echo reduction achieved by acoustic damping (ERL) and signal processing (ERLE). **Nonlinear Processing** provides additional echo cancellation, for more challenging applications. However, increased Nonlinear Processing can also adversely affect full-duplex operation. **Ref**, **Mic**, and **Out** display levels at the AEC Ref block and at the AEC block (pre & post AEC respectively). **Echo Detect** indicates AEC in progress. **Echo Path Changed** indicates AEC converging. **Min Threshold** prevents AEC re-convergence due to momentarily low levels (such as muted mics).

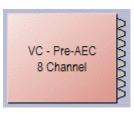
Right-clicking over certain settings will provide a menu of additional options.

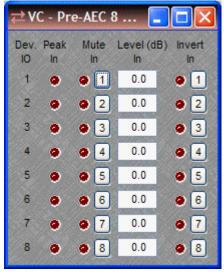
Each NEXIA VC comes pre-configured from the factory with a <u>default system design</u>. If you wish to load your own custom designed configuration you will need to <u>reset/initialize</u> the unit(s) first.

VC - AEC Ref 8 Channel

NEXIA **VC** hardware is represented in the Layout with as many as seven separate blocks. Between these blocks can be placed virtually any of the other available NEXIA mixing, routing, and processing blocks (component objects). Like other component objects, NEXIA VC blocks can be placed into the Layout either from the <u>Processing Library</u> or from the <u>Object Toolbar</u>. The **VC – AEC Ref 8 Channel** block has no control dialog of its own. Double-clicking this block in the Layout will produce the control dialog for the associated VC – AEC Input 8 Channel block.

AEC Ref provides the 'reference' signal for the associated <u>AEC input channels</u>. This reference is the signal that AEC will cancel at the corresponding input. In conferencing applications, AEC Ref


blocks should typically receive 'far-end' (Codec In) and 'program' signals only (not microphones), and be connected as close as possible to the output, so as to reflect any level adjustments and signal processing applied for local sound reinforcement of those same signals. This approach provides the most accurate reference. AEC Ref blocks should never be connected to paths containing signal from corresponding AEC Inputs.

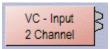

Each NEXIA VC comes pre-configured from the factory with a <u>default system design</u>. If you wish to load your own custom designed configuration you will need to <u>reset/initialize</u> the unit(s) first.

VC - Pre-AEC 8 Channel

NEXIA **VC** hardware is represented in the Layout with as many as seven separate blocks. Between these blocks can be placed virtually any of the other available NEXIA mixing, routing, and processing blocks (component objects). Like other component objects, NEXIA VC blocks can be placed into the Layout either from the <u>Processing Library</u> or from the <u>Object Toolbar</u>. To access **VC – Pre-AEC 8 Channel** settings, double-click over the corresponding block in the Layout. This opens a Control Dialog Box which provides all available settings.

When placing a Nexia VC into the Layout, the VC – Pre-AEC 8 Channel block is optional. It provides the same set of input signals as the VC - AEC Input 8 Channel block. However, the signals are derived from the input preamp directly, and are not affected by AEC or Noise Reduction processing. Pre-AEC input signals can be used to feed 'local' outputs, while the AEC input signals are used to feed the 'far end' (Codec Out).

Device IO indicates which hardware input is associated with that software channel. **Peak In** should flash only occasionally (6dB headroom), as determined by <u>AEC Input</u> Gain In settings. **Mute In** turns the input signal on/off. **Level (dB) In** adjusts the relative input volume. **Invert In** reverses the polarity of the input signal.

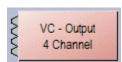

Right-clicking over certain settings will provide a menu of additional options.

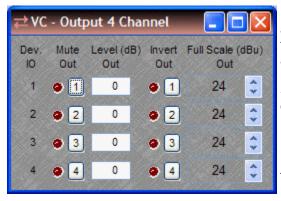
Each NEXIA VC comes pre-configured from the factory with a <u>default system design</u>. If you wish to load your own custom designed configuration you will need to <u>reset/initialize</u> the unit(s) first.

VC - Input 2 Channel

NEXIA **VC** hardware is represented in the Layout with as many as seven separate blocks. Between these blocks can be placed virtually any of the other available NEXIA mixing, routing, and processing blocks (component objects). Like other component objects, NEXIA VC blocks can be placed into the Layout either from the <u>Processing Library</u> or from the <u>Object Toolbar</u>. To access **VC –Input 2 Channel** settings, double-click over the corresponding block in the Layout. This opens a Control Dialog Box which provides all available settings.

Device IO indicates which hardware input is associated with that software channel. Gain In compensates for different input levels (mic or line), and should be set so Peak In flashes only occasionally (6dB headroom). Phan Pwr assigns +48 Volt phantom power to the input for condenser microphones. Mute In turns the input signal on/off. Level (dB) In adjusts the relative input volume. Invert In reverses the polarity of the input signal.

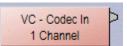

Right-clicking over certain settings will provide a menu of additional options.


Each NEXIA VC comes pre-configured from the factory with a <u>default system design</u>. If you wish to load your own custom designed configuration you will need to <u>reset/initialize</u> the unit(s) first.

VC - Output 4 Channel

NEXIA **VC** hardware is represented in the Layout with as many as seven separate blocks. Between these blocks can be placed virtually any of the other available NEXIA mixing, routing, and processing blocks (component objects). Like other component objects, NEXIA VC blocks can be placed into the Layout either from the <u>Processing Library</u> or from the <u>Object Toolbar</u>. To access **VC – Output 4 Channel** settings, double-click over the corresponding block in the Layout. This opens a Control Dialog Box which provides all available settings.

Device IO indicates which hardware output is associated with that software channel. Mute Out turns the output signal on/off. Level (dB) Out adjusts the relative output volume. Invert Out reverses the polarity of the output signal. Full Scale (dBu) Out selects the appropriate maximum output reference level (mic or line).

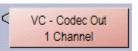

Each NEXIA VC comes pre-configured from the factory with a <u>default system design</u>. If you wish to load your own custom designed configuration you will need to <u>reset/initialize</u> the unit(s) first.

Right-clicking over certain settings will provide a menu of additional options.

VC - Codec In 1 Channel

NEXIA **VC** hardware is represented in the Layout with as many as seven separate blocks. Between these blocks can be placed virtually any of the other available NEXIA mixing, routing, and processing blocks (component objects). Like other component objects, NEXIA VC blocks can be placed into the Layout either from the <u>Processing Library</u> or from the <u>Object Toolbar</u>. To access **VC – Codec In 1 Channel** settings, double-click over the corresponding block in the Layout. This opens a Control Dialog Box which provides all available settings.

Device IO indicates which hardware input is associated with that software channel. **Gain In** compensates for different line input levels, and should be set so **Peak In** flashes only occasionally (6dB headroom). **Mute In** turns the input signal on/off. **Level (dB) In** adjusts the relative input volume. **Invert In** reverses the polarity of the input signal.

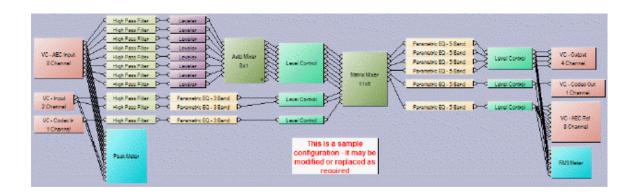

Right-clicking over certain settings will provide a menu of additional options.

Each NEXIA VC comes pre-configured from the factory with a <u>default system design</u>. If you wish to load your own custom designed configuration you will need to <u>reset/initialize</u> the unit(s) first.

VC - Codec Out 1 Channel

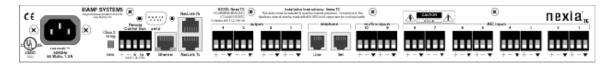
NEXIA **VC** hardware is represented in the Layout with as many as seven separate blocks. Between these blocks can be placed virtually any of the other available NEXIA mixing, routing, and processing blocks (component objects). Like other component objects, NEXIA VC blocks can be placed into the Layout either from the <u>Processing Library</u> or from the <u>Object Toolbar</u>. To access **VC – Codec Out 1 Channel** settings, double-click over the corresponding block in the Layout. This opens a Control Dialog Box which provides all available settings.

Device IO indicates which hardware output is associated with that software channel. Mute Out turns the output signal on/off. Level (dB) Out adjusts the relative output volume. Invert Out reverses the polarity of the output signal. Full Scale (dBu) Out selects the appropriate maximum line output reference level.


Right-clicking over certain settings will provide a menu of additional options.

Each NEXIA VC comes pre-configured from the factory with a <u>default system design</u>. If you wish to load your own custom designed configuration you will need to <u>reset/initialize</u> the unit(s) first.

VC Default Configuration


Videoconference System

Each Nexia device comes pre-configured from the factory with a default system design. The factory default configuration for a NEXIA VC is a 'videoconference system' with 8 automixer AEC mic inputs, 2 program line inputs, and a codec input feeding a matrix to 4 outputs and a codec output (see design layout below). This "VC Default Configuration.NEX" file can be found under Sample Files on the NEXIA software CD. If you wish to load your own custom designed configuration you will need to reset/initialize the unit(s) first.

TC

TC Hardware

AEC Inputs: These eight plug-in barrier strip connectors provide balanced input for microphone or line level signals, and include selectable acoustic echo cancellation and background noise reduction. For unbalanced input, wire high to (+) and ground to both (▼) & (-). Settings for these inputs are accessed by double-clicking the <u>TC - AEC Input 8 Channel</u> (or <u>TC - AEC Ref 8 Channel</u>) blocks, and the optional <u>TC - Pre-AEC 8 Channel</u> block, in the Layout.

Mic/Line Inputs: These two plug-in barrier strip connectors provide balanced input for microphone or line level signals. For unbalanced input, wire high to (+) and ground to both (τ) & (-). Settings for these inputs are accessed by double-clicking the $\underline{\text{TC}}$ - Input 2 Channel block in the Layout.

Telephone Set / Line: These two parallel RJ11 jacks provide industry-standard Tip & Ring connections for an analog telephone line and a desk-set station. Settings for this interface are accessed by double-clicking the individual <u>Telephone Interface</u> blocks in the Layout.

Outputs: These four plug-in barrier strip connectors provide balanced output of microphone or line level signals. For unbalanced output, wire high to (+) and ground to (τ), leaving (-) unconnected. Settings for these outputs are accessed by double-clicking the $\underline{\text{TC - Output 4 Channel}}$ block in the Layout.

NexLink: These two RJ45 jacks provide the NexLink Tx (transmit) and Rx (receive) connections. Up to four NEXIA devices may be linked together to share digital audio signals. Tx on one NEXIA device is connected to RX on the next device. NexLink utilizes straight through shielded CAT5 cabling, with a maximum recommended length of 5 meters per cable. When multiple NEXIA devices are placed in the Layout, NexLink blocks allow routing of digital audio between linked devices.

Ethernet: All NEXIA devices use Ethernet, both for system programming and control. Programming is accomplished using the NEXIA software provided with each unit. NEXIA software is for PC computers, with Windows® XP Professiona/Vista operating system required. The PC computer must have a network card installed, which supports 10/100BaseT Ethernet. A 10/100BaseT Ethernet switch (not hub) is required when networking multiple units (see System Network Considerations). Ethernet utilizes standard CAT5 cabling, which has a specified maximum length of 100 meters. However, Ethernet switches which provide fiber-optic interface can be used to extend the physical distance between units within a network.

Serial Control Port: After initial programming and configuration, NEXIA systems may be controlled by <u>RS-232 or Telnet</u> communications from third-party control systems such as AMX® or Crestron®, using the Serial Control Port. Also, external devices may be controlled via the Serial Control Port, by utilizing <u>Command String</u> blocks within the NEXIA system design.

Remote Control Bus: The Remote Control Bus provides connection for <u>Volume 8</u>, <u>Select 8</u>, <u>Volume/Select 8</u>, <u>Voltage Control Box</u>, and <u>Logic Box</u> external control devices (see <u>Remote Control Bus</u> for more information).

Power Entrance: The Power Entrance provides connection for the appropriate power cord (included with unit). An internal universal switching power supply accepts 100~240VAC @ 50/60Hz, with a maximum power consumption of 65 Watts.

Front Panel Indicators: The Front Panel Indicators (I/O, Com, & Status) are 2-color LEDs.

The following table lists their behavior:

All LEDs green Normal operating state. Configuration was successful (if applicable).

Device is in a stable state awaiting commands.

I/O LED red Internal audio hardware error.

Com LED red Serial Port error.

Ethernet error.

CAN Bus error.

No IP address defined (cleared by setting IP address).

Status LED red Configuration error.

Last configuration unsuccessful (cleared by 'reset/initializing' the

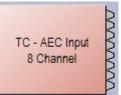
device). Operating systems resource error.

File system error.

DSP error.

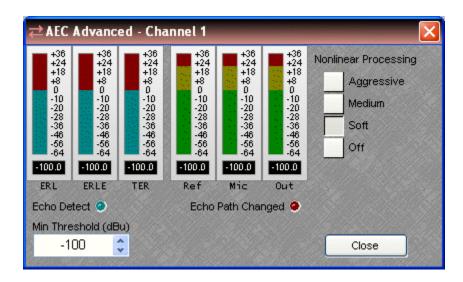
All LEDs blinking Operating system is not executing. Device must be power cycled.

Status LED blinking The firmware has attempted to perform an illegal operation. Device


must be power cycled.

Control Dialogs

TC - AEC Input 8 Channel



NEXIA **TC** hardware is represented in the Layout with as many as ten separate blocks. Between these blocks can be placed virtually any of the other available NEXIA mixing, routing, and processing blocks (component objects). Like other component objects, NEXIA TC blocks can be placed into the Layout either from the Processing Library or from the Object Toolbar. To access **TC – AEC Input 8 Channel** settings, double-click over the corresponding block in the Layout. This opens a Control Dialog Box which provides all available settings.

Device IO indicates which hardware input is associated with that software channel. **Gain In** compensates for different input levels (mic or line), and should be set so **Peak In** flashes only occasionally (6dB headroom). **Phan Pwr** assigns +48 Volt phantom power to the input for condenser microphones. **Mute In** turns the input signal on/off. **Level (dB) In** adjusts the relative input volume. **Invert In** reverses the polarity of the input signal. **AEC** turns on/off acoustic echo cancellation. **Adv** opens an Advanced dialog. **Noise Reduction In** selects the amount of background noise reduction to be applied (6~15dB).

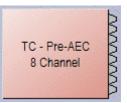
Each channel of AEC has an Advanced dialog box. **ERL** (Echo Return Loss) shows the level difference between a signal at the speaker output (AEC Ref) and that same signal as picked up at the mic (AEC Input). **ERLE** (Echo Return Loss Enhancement) indicates the amount of processing being applied on that channel. **TER** (Total Echo Reduction) shows the combined echo reduction achieved by acoustic damping (ERL) and signal processing (ERLE). **Nonlinear Processing** provides additional echo cancellation, for more challenging applications. However, increased Nonlinear Processing can also adversely affect full-duplex operation. **Ref**, **Mic**, and **Out** display levels at the AEC Ref block and at the AEC block (pre & post AEC respectively). **Echo Detect** indicates AEC in progress. **Echo Path Changed** indicates AEC converging. **Min Threshold** prevents AEC re-convergence due to momentarily low levels (such as muted mics).

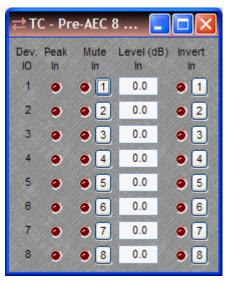
Right-clicking over certain settings will provide a menu of additional options.

Each NEXIA TC comes pre-configured from the factory with a <u>default system design</u>. If you wish to load your own custom designed configuration you will need to <u>reset/initialize</u> the unit(s) first.

TC - AEC Ref 8 Channel

NEXIA **TC** hardware is represented in the Layout with as many as seven separate blocks. Between these blocks can be placed virtually any of the other available NEXIA mixing, routing, and processing blocks (component objects). Like other component objects, NEXIA TC blocks can be placed into the Layout either from the <u>Processing Library</u> or from the <u>Object Toolbar</u>. The **TC – AEC Ref 8 Channel** block has no control dialog of its own. Double-clicking this block in the Layout will produce the control dialog for the associated TC – AEC Input 8 Channel block.


AEC Ref provides the 'reference' signal for the associated <u>AEC input channels</u>. This reference is the signal that AEC will cancel at the corresponding input. In conferencing applications, AEC Ref blocks should typically receive 'far-end' (<u>Receive</u>) and 'program' signals only (not microphones), and be connected as close as possible to the output, so as to reflect any level adjustments and signal processing applied for local sound reinforcement of those same signals. This approach provides the most accurate reference. AEC Ref blocks should never be connected to paths containing signal from corresponding AEC Inputs.


Each NEXIA TC comes pre-configured from the factory with a <u>default system design</u>. If you wish to load your own custom designed configuration you will need to <u>reset/initialize</u> the unit(s) first.

TC - Pre-AEC 8 Channel

NEXIA **TC** hardware is represented in the Layout with as many as seven separate blocks. Between these blocks can be placed virtually any of the other available NEXIA mixing, routing, and processing blocks (component objects). Like other component objects, NEXIA TC blocks can be placed into the Layout either from the <u>Processing Library</u> or from the <u>Object Toolbar</u>. To access **TC – Pre-AEC 8 Channel** settings, double-click over the corresponding block in the Layout. This opens a Control Dialog Box which provides all available settings.

When placing a Nexia TC into the Layout, the **TC – Pre-AEC 8 Channel** block is optional. It provides the same set of input signals as the <u>TC - AEC Input 8 Channel</u> block. However, the signals are derived from the input preamp directly, and are not affected by AEC or Noise Reduction processing. Pre-AEC input signals can be used to feed 'local' outputs, while the AEC input signals are used to feed the 'far end' (Transmit).

Device IO indicates which hardware input is associated with that software channel. **Peak In** should flash only occasionally (6dB headroom), as determined by <u>AEC Input</u> Gain In settings. **Mute In** turns the input signal on/off. **Level (dB) In** adjusts the relative input volume. **Invert In** reverses the polarity of the input signal.

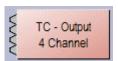
Right-clicking over certain settings will provide a menu of additional options.

Each NEXIA TC comes pre-configured from the factory with a <u>default system design</u>. If you wish to load your own custom designed configuration you will need to reset/initialize the unit(s) first.

TC - Input 2 Channel

NEXIA **TC** hardware is represented in the Layout with as many as seven separate blocks. Between these blocks can be placed virtually any of the other available NEXIA mixing, routing, and processing blocks (component objects). Like other component objects, NEXIA TC blocks can be placed into the Layout either from the <u>Processing Library</u> or from the <u>Object Toolbar</u>. To access **TC –Input 2 Channel** settings, double-click over the corresponding block in the Layout. This opens a Control Dialog Box which provides all available settings.

Device IO indicates which hardware input is associated with that software channel. Gain In compensates for different input levels (mic or line), and should be set so Peak In flashes only occasionally (6dB headroom). Phan Pwr assigns +48 Volt phantom power to the input for condenser microphones. Mute In turns the input signal on/off. Level (dB) In adjusts the relative input volume. Invert In reverses the polarity of the input


Right-clicking over certain settings will provide a menu of signal. additional options.

Each NEXIA TC comes pre-configured from the factory with a <u>default system design</u>. If you wish to load your own custom designed configuration you will need to <u>reset/initialize</u> the unit(s) first.

TC - Output 4 Channel

NEXIA **TC** hardware is represented in the Layout with as many as seven separate blocks. Between these blocks can be placed virtually any of the other available NEXIA mixing, routing, and processing blocks (component objects). Like other component objects, NEXIA TC blocks can be placed into the Layout either from the <u>Processing Library</u> or from the <u>Object Toolbar</u>. To access **TC – Output 4 Channel** settings, double-click over the corresponding block in the Layout. This opens a Control Dialog Box which provides all available settings.

Device IO indicates which hardware output is associated with that software channel. Mute Out turns the output signal on/off. Level (dB) Out adjusts the relative output volume. Invert Out reverses the polarity of the output signal. Full Scale (dBu) Out selects the appropriate maximum output reference level (mic or line).

Each NEXIA TC comes pre-configured from the factory with a <u>default system design</u>. If you wish to load your own custom designed configuration you will need to <u>reset/initialize</u> the unit(s) first.

Right-clicking over certain settings will provide a menu of additional options.

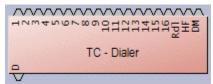
Telephone Interface

The NEXIA TC Telephone Interface provides connection and control via a standard analog telephone line and a desk-set station (see TC Hardware). The Telephone Interface is represented by as many as five separate blocks, as determined during placement into the Layout via the Object Toolbar. Two primary blocks represent the audio Receive and Transmit functions. Three optional control blocks may be added individually at any time, representing functions for Dialer, DTMF Decode, and Control/Status.

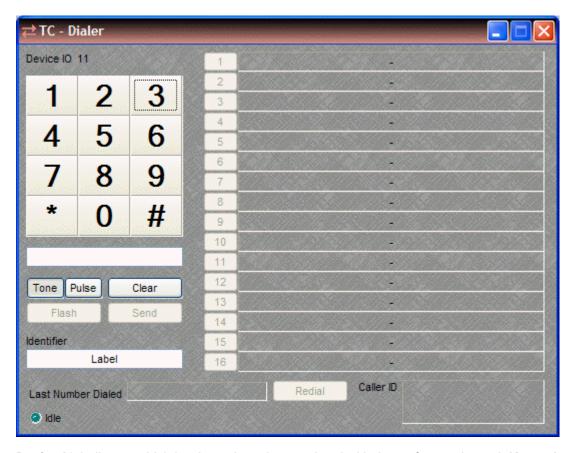
The Receive block provides an output mix of incoming audio and internal ring tone signals. Also, a Hook Switch (**HS**) control input node allows manual answering of incoming calls, and a Ring indication (**RI**) control output node provides indication of incoming calls.

Double-clicking the Receive block produces a control dialog box.

Device IO indicates which hardware connection is associated with that software block. **Auto Answer** selects the number of rings (or OFF) for automatic answering of incoming calls. **Input** provides level adjustment and muting of incoming audio signals. **Ring** provides level adjustment of the internal ring tone signals for incoming calls. **Noise Suppression** enables cancellation of telephone line noise.



The Transmit block provides an input connection for outgoing audio signals.


Double-clicking the Transmit block produces a control dialog box.

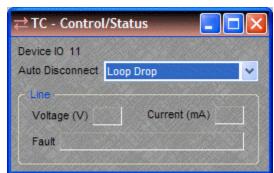
Device IO indicates which hardware connection is associated with that software block. **Output** provides level adjustment and muting of outgoing audio signals.



The Dialer block provides several control input nodes: nodes 1~16 trigger corresponding speed-dial numbers; Rdl triggers redial of last number; HF triggers hook flash; and DM selects pulse dial mode (not currently supported). A control output node (D) provides indication of dialing in progress.

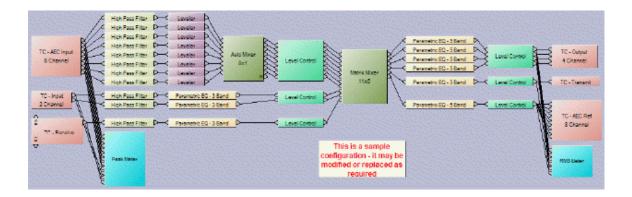
Double-clicking the Dialer block produces a control dialog box.

Device IO indicates which hardware input is associated with that software channel. **Keypad** (1~#) allows number entry via computer mouse. A text box below the Keypad displays the number entry, and allows number entry via computer keyboard ("," = pause). **Clear** deletes the current number. **Send** dials the current number and becomes **End** for terminating the call. **Tone/Pulse** selects the dialing mode. **Flash** produces a hook flash on an active line. **Identifier** allows custom labeling for line identification. **Last Number Dialed** displays the number for the previous outgoing call. **Redial** dials Last Number Dialed. **Caller ID** displays the number from the current (or last) incoming call. **Idle** changes to indicate call progress, while the adjacent LED indicates an active line. Buttons **1~16** initiate speed-dialing.


The DTMF Decode block provides several control output nodes: nodes 1~D provide indication of corresponding DTMF tones; **Any** provides indication of any tones.

Double-clicking the DTMF Decode block produces a control dialog box. **Device IO** indicates which hardware connection is associated with that software block. **DTMF Decode** enables decoding. **Decoded Data** displays the characters associated with the tones.

The Control/Status block provides several control output nodes: **HS** indicates hook switch OFF condition; **DTD** indicates dial tone detected; **BTD** indicates busy tone detected; **RTD** indicates ring tone detected; **LR** indicates line ready (connected); **LIU** indicates line in use (by other extension); **LI** indicates line intrusion (by other extension); **LF** indicates line fault condition (may require service).


Double-clicking the Control/Status block produces a control dialog box. **Device IO** indicates which hardware connection is associated with that software block. **Auto Disconnect** provides three methods of call termination (the method used depends on the far-end equipment). Loop Drop detects interruptions in the current of the telephone circuit, Call Progress detects a special tone indicating call termination, and some far-end equipment may use a combination of Loop Drop + Call Progress. *NOTE: Auto Disconnect reliability may be affected by intermittent line interruptions or cellular calls.* **Line** displays voltage, current, and fault conditions on the line.

NOTES: Before compiling, a **Country** must be designated in the <u>Receive</u> block <u>Property Sheet</u>. For protection of privacy, the **Last Number Dialed** and **Caller ID** displays (on the Dialer control dialog box) can be disabled via the <u>Control/Status</u> block <u>Property Sheet</u>. **Sidetone Level** can be set via the <u>Dialer</u> block <u>Property Sheet</u>.

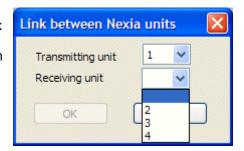
TC Default Configuration

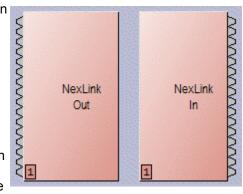
Teleconference System

Each Nexia device comes pre-configured from the factory with a default system design. The factory default configuration for a NEXIA TC is a 'teleconference system' with 8 automixer AEC mic inputs, 2 program line inputs, and a telephone input feeding a matrix to 4 outputs and a telephone output (see design layout below). This "TC Default Configuration.NEX" file can be found under Sample Files on the NEXIA software CD. If you wish to load your own custom designed configuration you will need to reset/initialize the unit(s) first.

Nx

NexLink


Up to four NEXIA devices may be linked together to share digital audio signals. Tx on one NEXIA device is connected to Rx on the next device, using straight through shielded CAT5 cabling, with a maximum recommended length of 5 meters per cable.


When multiple NEXIA devices are placed in the Layout, NexLink blocks become available for routing digital audio between linked devices. As NexLink blocks are placed into the Layout, a dialog box appears for establishing links between specific devices.

A device can transmit up to sixteen channels of digital audio to any other single device in the system. A device can also receive up to sixteen channels of digital audio from any other single device in the system.

NexLink is always represented in the Layout as two separate blocks, one for output connections (from transmitting device) and one for input connections (to receiving device).

Signals received by one device may be mixed and processed as desired, then passed on to another device, using a separate set of NexLink blocks. NexLink transmissions are unidirectional, however, signals will pass through other devices to reach the destination device. A complete circuit may be created between devices by connecting the final device back to the first (see diagram to left).

NOTE: Double-clicking a NexLink In block provides a Link Status indicator. This indicator will be green only when communicating with devices that have appropriate NexLink cabling in place.

Mixers

Mixers

These Component Objects provide typical audio mixing functions, in five categories: Standard Mixers; Matrix Mixers; Auto Mixers; Mix-Minus Combiners; and Room Combiners. Mix-Minus Combiners are provided to enhance the capabilities of Auto Mixers in mix-minus and input expansion applications. Room Combiners are provided to enhance the capabilities of Auto Mixers in room combining and zone routing applications. Mixers are available in pre-defined configurations, however, the configuration may be customized when being placed from the Object Toolbar.

Once a Component Object is placed into the Layout, all available settings can be accessed by double-clicking over the object. This produces a Control Dialog Box, which displays the component controls in a more conventional user interface.

■see Auto Mixers Control Dialog

see Standard Mixers Control Dialog

see Matrix Mixers Control Dialog

See Mix-Minus Combiners Control Dialog

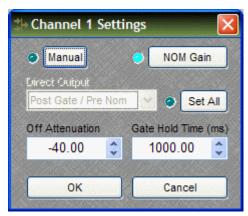
■see Room Combiners Control Dialog

Right-clicking over the object provides a pop-up menu of options. Control Dialog Boxes for Room Combiner components can be minimized to create user control surfaces (see Customizing Component Objects).

Control Dialogs

Auto Mixers

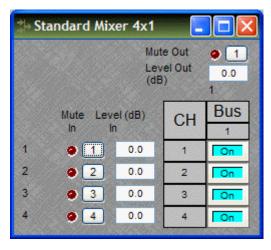
Mute In turns the input signal on/off. **Level In** adjusts the relative input volume. **Ch / Bus** assigns inputs to the output. **Mute Out** turns the output signal on/off. **Level Out** adjusts the relative output volume.


Right-clicking over certain settings will provide a menu of additional options. Unlike other components, Mixers allow labeling of inputs/outputs within their dialog boxes. See **Channel Identifier** under Object Property Sheet.

Mic Options opens a separate control dialog box to establish global settings.

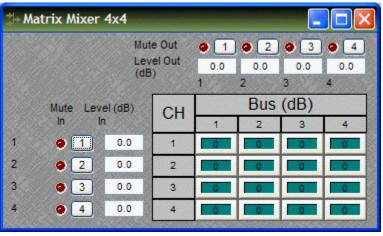
Designated Mic On / Last Mic Hold determines which microphone (if any) will stay/become active when no signal is present. **Logic Outputs Follow Mic Logic** assigns logic outputs to follow Designated Mic On / Last Mic Hold. **Open Mic Limits** enables (and designates) a maximum allowable number of active microphones.

Right-clicking over Ch / Bus assignments allows selection of two additional dialog boxes.



Channel Settings affects individual channel settings, but may be applied to all channels. Manual turns on/off channel gating. NOM Gain turns on/off channel contribution to NOM (number of open mics) attenuation. Direct Output designates channel direct output signal as Post Gate / Pre NOM, Post Gate / Post NOM, or Off. (Direct Outputs must be enabled when placing Auto Mixers from the Object Toolbar.) Set All causes current Channel Settings to be applied to all channels. Off Attenuation determines the amount of attenuation applied when channel is inactive. Gate Hold Time determines length of time before channel becomes inactive, once signal is no longer present.

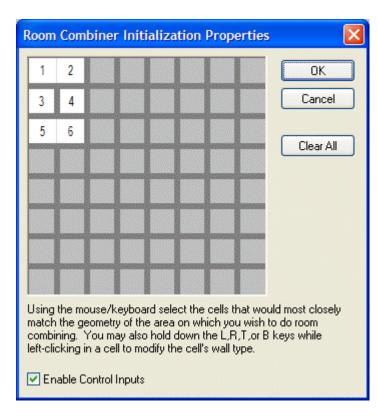
Logic Outputs affects individual Logic Output settings, but may be applied to all Logic Outputs. (Logic Outputs must be designated when placing Auto Mixers from the Object Toolbar). Logic Output selects Follow Gate, On, or Off condition of the Logic Output. Invert reverses operation of the Logic Output (off when channel active). Set All causes current Logic Output settings to be applied to all channels.


Standard Mixers

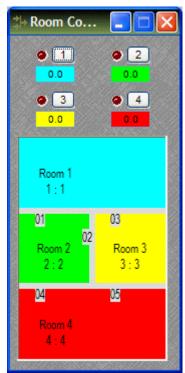
Mute In turns the input signal on/off. **Level In** adjusts the relative input volume. **Ch / Bus** assigns inputs to specific outputs. **Mute Out** turns the output signal on/off. **Level Out** adjusts the relative output volume.

Right-clicking over certain settings will provide a menu of additional options. Unlike other components, Mixers allow labeling of inputs/outputs within their dialog boxes. See **Channel Identifier** under Object Property Sheet.

Matrix Mixers


Mute In turns the input signal on/off. Level In adjusts the relative input volume. Ch / Bus assigns inputs to specific outputs, and right-clicking allows level adjustment. Mute Out turns the output signal on/off. Level Out adjusts the relative output volume.

Matrix Mixers w/Delay are also available. **Mix Table** assigns Ch / Bus to affect either level or delay settings.


Right-clicking over certain settings will provide a menu of additional options. Unlike other components, Mixers allow labeling of inputs/outputs within their dialog boxes. See **Channel Identifier** under Object Property Sheet.

Room Combiners

Room Combiners are provided to enhance the capabilities of Auto Mixers in room combining and zone routing applications. Room Combiners automatically determine proper routing of audio signals & control data for the Auto Mixers. Control data represents NOM (number of open mics) and ATS (adaptive threshold sensing) information. Room Combiners are available only from the Object Toolbar (not from the Processing Library).

When a Room Combiner is placed, an Initialization Properties dialog box appears for creating physical relationships between rooms. The overall space is first defined by leftclicking multiple squares (noncontiguous rooms are allowed). Right-clicking then provides a menu of additional options, such as Merge adjacent squares into larger rooms, and Isolate rooms which have no moveable partitions. **Enable Control Inputs provides** the Room Combiner with control nodes, which allow combining via external devices (see Controls).

Once a Room Combiner is placed, the Control Dialog Box is available, which displays the overall space, including zones, partitions, levels, and mutes. Moveable partitions are numbered relative to control input nodes on the block. Combining may be accomplished 'automatically' by manipulation of these partitions. Moveable partitions can be opened/closed by means of external controls (see Controls & RS-232/Telnet). Combining can instead be accomplished by recalling stored preset configurations. Preset configurations must first be created, then recalled through either a Software User Interface or external controls (see Controls & RS-232/Telnet).

The Room Combiner dialog box allows rooms to be combined in groups, which are color-coded and numbered for identification. This can be used for real-time software control, or to generate various configurations to be stored as presets. Rooms can be grouped by manipulating partitions (using the mouse), or by selecting multiple rooms while holding *Shift* or *Ctrl*. This last approach allows non-contiguous and isolated rooms to be included in combined groups. Right-clicking on a room provides a menu of sixteen available groups. Level and mute adjustments become ganged for all rooms combined in the same group.

Right-clicking over certain settings will provide a menu of additional options. Control Dialog Boxes for Room Combiner components can be minimized to create user control surfaces (see Customizing Component Objects).

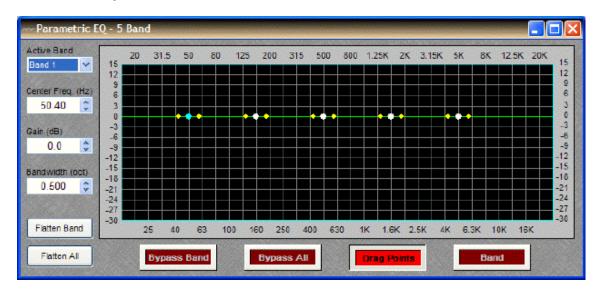
Equalizers

Equalizers

These Component Objects provide both graphic and parametric equalization, as well as feedback suppression. Equalizers may be connected between any components within the Layout, for applications which require room equalization, tone adjustment, or feedback control. Equalizers are available in pre-defined configurations, however, the configuration may be customized when being placed from the Object Toolbar.

Once a Component Object is placed into the Layout, all available settings can be accessed by double-clicking over the object. This produces a Control Dialog Box, which displays the component controls in a more conventional user interface.

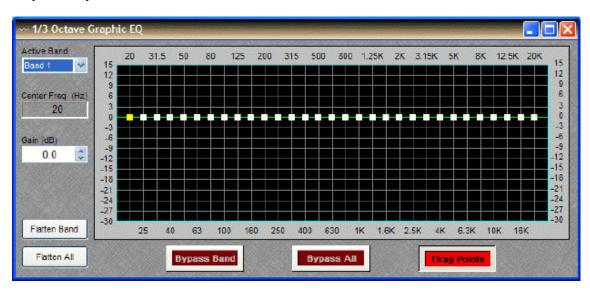
see Parametric Equalizer Control Dialog


see Graphic Equalizer Control Dialog

See Feedback Suppressor Control Dialog

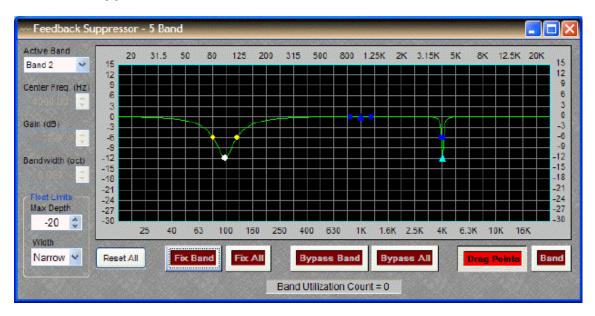
Right-clicking over the object provides a pop-up menu of options.

Control Dialogs


Parametric Equalizer

Active Band selects the current band to be adjusted. Center Freq. adjusts the center frequency for the current band. Gain adjusts the amount of cut or boost applied at the center frequency for the current band. Bandwidth adjusts the range of frequencies, above & below the center frequency, which are also affected by the current band. These settings may also be adjusted by dragging the band controls shown inside the graph. Dragging the white dot affects both Center Freq. & Gain. Dragging either yellow dot affects Bandwidth. Flatten Band & Flatten All change the band(s) Gain to '0' (flat). Bypass Band & Bypass All disable the band(s) without changing settings. Drag Points turns on/off the band controls, revealing the resultant curve only. Band highlights the current band inside the graph.

Right-clicking over certain settings will provide a menu of additional options.


Graphic Equalizer

Active Band selects the current band to be adjusted. Center Freq. displays the center frequency for the current band. Gain adjusts the amount of cut or boost applied at the center frequency for the current band. Active Band and Gain may also be adjusted by dragging the band controls shown inside the graph. The selected band control becomes yellow, and dragging it up/down affects Gain for that band. Flatten Band & Flatten All change the band(s) Gain to '0' (flat). Bypass Band & Bypass All disable the band(s) without changing settings. Drag Points turns on/off the band controls, revealing the resultant curve only.

Right-clicking over certain settings will provide a menu of additional options.

Feedback Suppressor

Feedback Suppressors behave like automatic cut-only <u>parametric equalizers</u>. They utilize 'floating' bands of equalization which detect and remove feedback frequencies.

Active Band selects the current band for which settings will be displayed. Center Freq. displays the center frequency for the current band. Gain displays the amount of cut applied at the center frequency for the current band. Bandwidth displays the range of frequencies, above & below the center frequency, which are also affected by the current band. Float Limits restricts all floating bands to a selected maximum depth (cut) and bandwidth (Narrow = 1/40-octave; Wide = 1/10-octave). Reset All temporarily returns the gain of all floating bands to 0dB (flat). Fix Band & Fix All allow the band(s) to become manually adjustable (non-floating). Bypass Band & Bypass All disable the band(s) without changing settings. Drag Points turns on/off the band controls, revealing the resultant curve only. Band highlights the current band inside the graph. Band Utilization Count indicates the quantity of floating bands currently being employed.

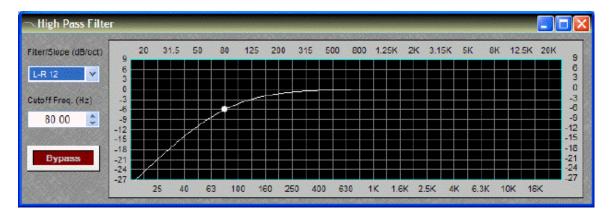
NOTE: Feedback Suppressors are fairly intensive in their use of DSP resources. They are limited to a maximum of sixteen bands, however, in most applications the number of actual bands used should be significantly less. Fixed bands in a Feedback Suppressor may be copied to a Parametric Equalizer. When applicable, this may be a more DSP efficient choice.

Right-clicking over certain settings will provide a menu of additional options.

Filters

Filters

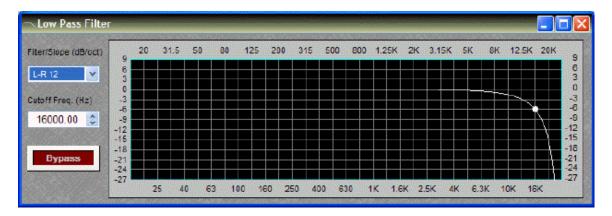
These Component Objects provide High-Pass, Low-Pass, High-Shelf, Low-Shelf, & All-Pass filters. Filters may be connected between any components within the Layout, for applications which require 'roll-offs', simple tone controls, or even phase compensation.


Once a Component Object is placed into the Layout, all available settings can be accessed by double-clicking over the object. This produces a Control Dialog Box, which displays the component controls in a more conventional user interface.

- ■see High Pass Filter Control Dialog
- see Low Pass Filter Control Dialog
- see High Shelf Filter Control Dialog
- see Low Shelf Filter Control Dialog
- see All-Pass Filter Control Dialog

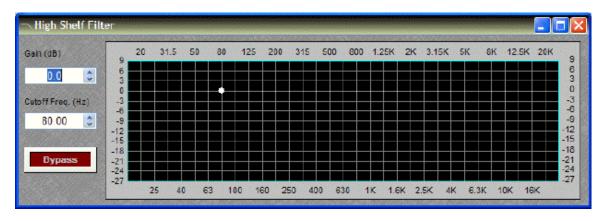
Right-clicking over the object provides a pop-up menu of options.

Control Dialogs


High Pass Filter

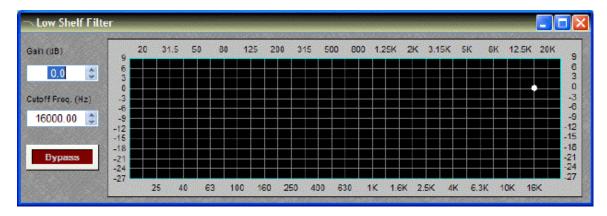
Filter / Slope selects the type (Linkwitz-Riley or Butterworth) and slope of the filter. **Cutoff Freq.** selects the cutoff frequency for the filter. Cutoff Freq. may also be adjusted by dragging the cursor shown inside the graph. **Bypass** disables the filter without changing settings.

Right-clicking over certain settings will provide a menu of additional options.


Low Pass Filter

Filter / Slope selects the type (Linkwitz-Riley or Butterworth) and slope of the filter. **Cutoff Freq.** selects the cutoff frequency for the filter. Cutoff Freq. may also be adjusted by dragging the cursor shown inside the graph. **Bypass** disables the filter without changing settings.

Right-clicking over certain settings will provide a menu of additional options.


High Shelf Filter

Gain selects the amount of maximum cut or boost applied by the filter. **Cutoff Freq.** selects the cutoff frequency for the filter. These settings may also be adjusted by dragging the cursor shown inside the graph. **Bypass** disables the filter without changing settings.

Right-clicking over certain settings will provide a menu of additional options.

Low Shelf Filter

Gain selects the amount of maximum cut or boost applied by the filter. **Cutoff Freq.** selects the cutoff frequency for the filter. These settings may also be adjusted by dragging the cursor shown inside the graph. **Bypass** disables the filter without changing settings.

Right-clicking over certain settings will provide a menu of additional options.

All-Pass Filter

All-Pass Filters are so named because they do not affect frequency response. Instead, they affect signal phase only and, therefore, can be used to compensate for the phase anomalies caused by normal equalization filters. All-Pass Filters are available with up to sixteen bands.

Active Band selects the current band to be adjusted. Center Freq. adjusts the center frequency for the current band. Bandwidth adjusts the range of frequencies, above & below the center frequency, which are also affected by the current band. These settings may also be adjusted by dragging the band controls shown inside the graph. Dragging the white dot affects Center Freq. Dragging either yellow dot affects Bandwidth. Add Band & Remove Band work within the designated number of bands for the filter. Bypass Band & Bypass All disable the band(s) without changing settings. Drag Points turns on/off the band controls, revealing the resultant curve only. Band highlights the phase response of the current band inside the graph.

See <u>Transfer Function</u> as an effective diagnostic tool to be used in conjunction with All-Pass Filters.

Right-clicking over certain settings will provide a menu of additional options.

Crossovers

Crossovers

These Component Objects provide 2-way, 3-way, & 4-way crossover functions. Crossovers may be connected between any components within the Layout, for applications which require multiple outputs with specified frequency ranges.

Once a Component Object is placed into the Layout, all available settings can be accessed by double-clicking over the object. This produces a Control Dialog Box, which displays the component controls in a more conventional user interface.

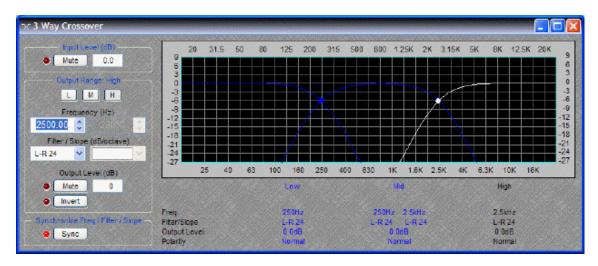
■see 2-Way Crossover Control Dialog


see 3-Way Crossover Control Dialog

see 4-Way Crossover Control Dialog

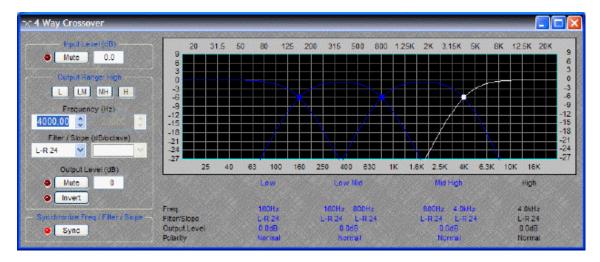
Right-clicking over the object provides a pop-up menu of options.

Control Dialogs


2-Way Crossover

Input Level provides muting and level adjustment for the input. Output Range selects the Low or High frequency output. Frequency selects the filter cutoff frequency for the selected output. Output Range & Frequency may also be selected by dragging the cursors shown inside the graph. Filter / Slope selects the type (Linkwitz-Riley or Butterworth) and slope of filter used at the associated Frequency. Output Level provides muting, level adjustment, & polarity reversal for the selected output. Sync forces filter adjustments on adjacent outputs to be linked. Settings for each output are displayed across the bottom of the dialog box.

Right-clicking over certain settings will provide a menu of additional options.


3-Way Crossover

Input Level provides muting and level adjustment for the input. **Output Range** selects the Low, Mid, or High frequency output. **Frequency** selects the filter cutoff frequencies for the selected output. Output Range & Frequency may also be selected by dragging the cursors shown inside the graph. **Filter / Slope** selects the type (Linkwitz-Riley or Butterworth) and slope of filter used at the associated Frequency. **Output Level** provides muting, level adjustment, & polarity reversal for the selected output. **Sync** forces filter adjustments on adjacent outputs to be linked. Settings for each output are displayed across the bottom of the dialog box.

Right-clicking over certain settings will provide a menu of additional options.

4-Way Crossover

Input Level provides muting and level adjustment for the input. **Output Range** selects the Low, Low-Mid, Mid-High, or High frequency output. **Frequency** selects the filter cutoff frequencies for the selected output. Output Range & Frequency may also be selected by dragging the cursors shown inside the graph. **Filter / Slope** selects the type (Linkwitz-Riley or Butterworth) and slope of filter used at the associated Frequency. **Output Level** provides muting, level adjustment, & polarity reversal for the selected output. **Sync** forces filter adjustments on adjacent outputs to be linked. Settings for each output are displayed across the bottom of the dialog box.

Right-clicking over certain settings will provide a menu of additional options.

Dynamics

Dynamics

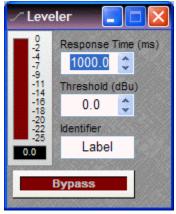
These Component Objects provide Leveler, Comp/Limiter, Ducker, Noise Gate, & Ambient Noise Compensator functions. Dynamics components may be connected between any other components within the Layout, for applications which require automatic control of volume levels and/or dynamics.

Once a Component Object is placed into the Layout, all available settings can be accessed by double-clicking over the object. This produces a Control Dialog Box, which displays the component controls in a more conventional user interface.

■see Leveler Control Dialog

■see Comp/Limiter Control Dialog

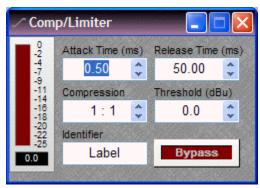
see Ducker Control Dialog


■see Noise Gate Control Dialog

See Ambient Noise Compensator Control Dialog

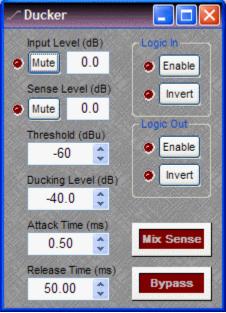
Right-clicking over the object provides a pop-up menu of options. Control Dialog Boxes for some Dynamics components can be minimized to create user control surfaces (see Customizing Component Objects).

Control Dialogs


Leveler

Levelers are automatic gain controls, which affect long-term average levels. **Response Time** determines how quickly the Leveler reacts to input level changes. **Threshold** determines what input level will trigger gain reduction. To maintain a consistent level, set Threshold to lowest desired level. A meter & numeric display indicate the amount of gain reduction. **Identifier** provides a custom label, when dialog box is minimized (see below). **Bypass** disables the Leveler without changing settings.

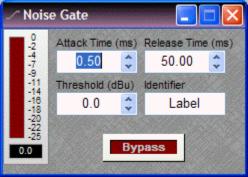
Right-clicking over certain settings will provide a menu of additional options. Control Dialog Boxes for Levelers can be minimized to create user control surfaces (see Customizing Component Objects).


Comp/Limiter

Comp/Limiters affect short-term signal dynamics (peaks). Attack determines how quickly the Comp/Limiter reacts to input level changes. Compression Ratio determines the intensity of gain reduction (input level increase vs. output level increase). Release Time determines how quickly gain reduction is released, once input signal falls below Threshold. Threshold determines what input level will trigger gain reduction. A meter & numeric display indicate the amount of gain reduction. Bypass disables the Comp/Limiter without changing settings. Identifier provides a custom label, when dialog box is minimized (see below).

Right-clicking over certain settings will provide a menu of additional options. Control Dialog Boxes for Comp/Limiters can be minimized to create user control surfaces (see Customizing Component Objects).

Ducker



Duckers provide level attenuation, triggered by signal or logic inputs. Input Level provides muting and level adjustment for the normal audio input, which appears as the upper input on the left side of the Ducker. Sense Level provides muting and level adjustment for the signal trigger input, which appears as the lower input on the left side of the Ducker. Threshold determines what sense input signal level will trigger ducking. Ducking Level determines how much attenuation is applied to the normal audio signal during ducking. Attack determines how quickly the ducker reacts to trigger input (signal or logic). **Release** determines how quickly attenuation is released. once trigger input is removed (signal or logic). Logic In turns on/off and reverses operation (off triggers ducking) of the logic trigger input, which appears at the top of the Ducker. Logic Out provides the same functions as Logic In, but instead as a trigger output (follows ducking activity), which appears at the bottom of the Ducker. Mix **Sense** allows the Sense input signal to be mixed with normal audio input signal, at the output of the Ducker. Bypass disables the Ducker without changing settings.

Right-clicking over certain settings will provide a menu of additional options.

Noise Gate

Noise Gates provide automatic muting, until triggered by signal presence. Attack Time determines how quickly the gate opens when signal is present. Release Time determines how quickly the gate closes when signal is no longer present. Threshold determines what input signal level will trigger the gate to open. A meter & numeric display indicate the amount of gain reduction. Identifier provides a custom label, when dialog box is minimized (see below). Bypass disables the Noise Gate without changing settings.

Right-clicking over certain settings will provide a menu of additional options. Control Dialog Boxes for Noise Gates can be minimized to create user control surfaces (see Customizing Component Objects).

Ambient Noise Compensator

Ambient Noise Compensators automatically adjust program volume in response to changes in background noise levels, as monitored by external ambient sensing microphone(s). Program Mute turns the program input signal on/off. Program Level adjusts the relative program input volume. Program Label provides a custom label, when the dialog box is minimized (see below). Prog Meter displays the current program input level. Ambient Mute turns the ambient input signal on/off. Ambient Level adjusts the relative ambient input volume. Ambient Threshold determines the ambient noise level at which program gain increases will begin. Ambient Response sets the period of time to be considered when calculating an average of ambient level changes. Ambient Label provides a custom label, when the dialog box is minimized (see below). Amb Meter displays the current ambient input level. The Set Threshold button can be used to estimate an appropriate Ambient Threshold setting. Gain Min sets the minimum output gain (for periods of low ambient noise). Gain Max sets the maximum output gain (for periods of high ambient noise). Gain Ratio determines how much the program volume will increase. relative to a given increase in ambient noise. Gain Time establishes how quickly program gain changes are applied. Gain Time indicates the amount of time required for a gain change between Min and Max settings. Lesser gain changes will occur more rapidly. Gain Meter displays the current gain compensation being applied. Bypass disables the Ambient Noise Compensator without changing settings.

Right-clicking over certain settings will provide a menu of additional options. Control Dialog Boxes for Ambient Noise Compensators can be minimized to create user control surfaces (see <u>Customizing Component Objects</u>).

See Ambient Noise Compensator setup procedure.

ANC Setup Procedure

Connections

Feed the "program" signal into the Program Input (top left) of the ANC block. Setup of
the ANC block is best done with a relatively constant program source. This can be the
actual program source or a pink noise approximation, but its level should represent the
highest program material level you expect will be fed to the ANC block.

- Feed the "ambient" signal into the Ambient Input (bottom left, marked with an "A") of the ANC block. This signal should be derived from either a single dedicated sensing microphone, or from a dedicated array of sensing microphones feeding a common Mixer block. Setup of the ANC block is best done when the ambient noise in the room(s) is minimal, but the Ambient Meter should read at least -60dBu.
- Connect the output of the ANC block to its destination. Keep in mind that the ANC should be the last block in the program signal path, with no form of level control provided at the outputs, amplifiers, or speakers.

Setting Min and Max Gain

Adjust the Min Gain and Max Gain settings for the desired amounts of minimum and
maximum gain to be applied to the program signal. Remember that Min Gain is the
constant gain that the ANC block will apply while the Ambient Input signal level is below
the Ambient Threshold. Remember that Max Gain is the maximum amount of gain that
the ANC block will ever apply to the program input.

If Min Gain and Max Gain are not known, these settings may be determined by listening to the ANC output, as follows:

- Set the Ambient Threshold to its maximum setting (+24dBu) to ensure the Ambient Input level is below threshold. This ramps the ANC to the Min Gain setting. Keep in mind that the speed of this ramping is determined by the Gain Time setting.
- Adjust Min Gain until you have the desired minimum program level comining out of the ANC block. Note this value for later.
- Adjust Min Gain until you have the desired maximum program level coming out of the ANC block. Set Max Gain to this value. Set Min Gain to the value determined in the previous step.

Setting Response Times

- Adjust the Gain Time to determine how quickly the ANC gain changes. Gain Time is the amount of time it takes for the ANC block to ramp from Gain Min to Gain Max, or vice versa.
- Adjust the Ambient Response time to determine how quickly the Ambient Input detector responds to changes in the Ambient Input signal. Ambient Response should be set fast enough to track important ambient level changes (e.g. an approaching train in a depot), but slow enough to ignore unimportant ambient level changes (e.g. someone popping their bubble gum).

Note: The overall responsiveness of the ANC output is determined by the larger (slower) of the two aforementioned times: Gain Time and Ambient Response time.

Setting Thresholds

 Press the "Set Threshold" button, ensuring that the Program Input level is a good approximation of the highest program signal level you expect will be fed to the ANC. This process records the levels of both the Ambient and Program inputs. The Ambient Threshold is set to 10dBu higher than the recorded Ambient level. This process takes up to 5 seconds.

Set Gain Ratio

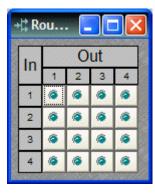
 Adjust Gain Ratio to specify how many dB of gain is applied for every dBu over Ambient Threshold the Ambient level is.

Routers

Routers

These Component Objects provide typical audio routing functions. Routers may be connected between any components within the Layout, for applications which require routing of input signals to various outputs. Routers are available in pre-defined configurations, however, the configuration may be customized when being placed from the <u>Object Toolbar</u>.

Once a Component Object is placed into the Layout, all available settings can be accessed by double-clicking over the object. This produces a Control Dialog Box, which displays the component controls in a more conventional user interface.


see Router Control Dialog

see Source Selections Control Dialog

Right-clicking over the object provides a pop-up menu of options.

Control Dialogs

Router

Routers allow each input to be assigned to multiple outputs via **In / Out**. However, each output allows only one input assigned at a time. Therefore, Routers behave like a series of individual distribution amplifiers. For increased input/output assignment capability, see <u>Mixers</u>.

Right-clicking over certain settings will provide a menu of additional options.

Delays

Delays

These Component Objects provide typical audio time-delay functions. Delays may be connected between any components within the Layout, for applications which require room delay and/or loudspeaker time-alignment.

Once a Component Object is placed into the Layout, all available settings can be accessed by double-clicking over the object. This produces a Control Dialog Box, which displays the component controls in a more conventional user interface.

see Delay Control Dialog

Right-clicking over the object provides a pop-up menu of options.

Control Dialogs

Delay

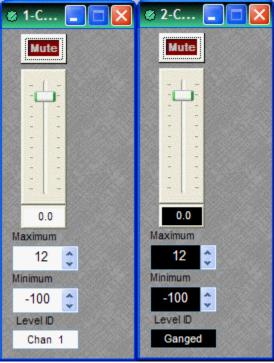
Value determines the amount of delay, based on the selected Units. **Units** selects either time (milliseconds) or distance (meters, centimeters, feet, or inches). **Bypass** disables the Delay without changing settings.

Right-clicking over certain settings will provide a menu of additional options.

Controls

Controls

These Component Objects provide both internal and external control functions. Level Controls, Mute Buttons, and Invert may be connected between components within the Layout, for control of volume, muting, and polarity. Preset and Remote Preset Buttons may be placed within the Layout, and defined to recall specified Presets. Logic Gates and Logic Delay may be connected between component control nodes in the layout, to customize control behavior. Command Strings can provide serial control of external devices, when triggered by control nodes on other components in the layout. Volume 8, Select 8, Volume/Select 8, Voltage Control Box, and Logic Box components may be placed within the layout, to represent their corresponding external control devices. Controls are available in pre-defined configurations, however, the configuration may be customized when being placed from the Object Toolbar.

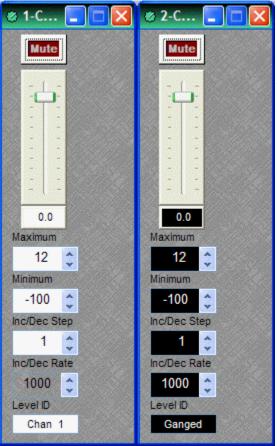

Once a Component Object is placed into the Layout, all available settings can be accessed by double-clicking over the object. This produces a Control Dialog Box, which displays the component controls in a more conventional user interface.

- see Level Control Dialog
- see Level Inc/Dec Control Dialog
- see Invert Control Dialog
- see Mute Button Control Dialog
- ■see Preset Button Control Dialog
- ■see Remote Preset Button Control Dialog
- ■see Logic Gates
- ■see Logic Delay Control Dialog
- see Command String Control Dialog
- see Volume 8 Control Dialog
- See Select 8
- see Volume/Select 8 Control Dialog
- see RED-1 Control Dialog
- ■see Voltage Control Box
- ■see Logic Box

Right-clicking over the object provides a pop-up menu of options. Control Dialog Boxes for Level, Invert, Mute, and Preset related components can be minimized to create user control surfaces (see <u>Customizing Component Objects</u>).

Control Dialogs

Level



Mute turns on/off the channel. Channel level may be entered numerically, or may be adjusted by dragging the **fader**. **Maximum** and **Minimum** can be used to restrict the range of level adjustment provided by the fader. **Level ID** provides a custom label, when the dialog box is minimized (see below).

Right-clicking over certain settings will provide a menu of additional options. Control Dialog Boxes for Level Control components can be minimized to create user control surfaces (see Customizing Component Objects).

When placed from the Object Toolbar, multiple Level Controls may be 'ganged' together onto a single fader. Ganged Level Controls display a 'G' in the upper-right of the Component Object, and Level ID colors are reversed on the Control Dialog. Non-ganged Level Controls have a maximum of 16 channels, whereas ganged Level Controls have a maximum of 32 channels.

Level Inc/Dec

Level Inc/Dec blocks are identical to Level blocks, except they also provide control input nodes for making incremental level changes. Inc/Dec Step determines the amount of level change to occur each time the associated control node is triggered. Control input nodes along the top of the block are labeled as positive (+) and negative (-). When triggered by control output nodes on other components within the layout design, positive nodes produce a single-step increase in level ("Increment") and negative nodes produce a single-step decrease in level ("Decrement").

When placed from the <u>Object Toolbar</u>, multiple Level Inc/Dec Controls may be 'ganged' together onto a single fader. Also, ramping may be enabled at this time. When ramping is enabled, **Inc/Dec Rate** sets timing (mS) between repetitive incremental changes (Inc/Dec Steps) which occur automatically as long as the associated control node (+ or -) remains triggered.

Invert

Invert reverses the polarity of the audio signal (180°). **Identifier** provides a custom label, when the dialog box is minimized (see below).

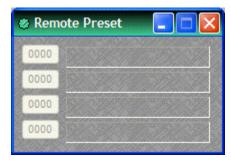
Right-clicking over certain settings will provide a menu of additional options. Control Dialog Boxes for Invert components can be minimized to create user control surfaces (see <u>Customizing Component Objects</u>).

When placed from the Object Toolbar, multiple Invert channels may be 'ganged' together onto a single control. Ganged Invert controls display a 'G' in the upper-right of the Component Object, and Identifier colors are reversed on the Control Dialog. Non-ganged Invert controls have a maximum of 16 channels, whereas ganged Invert Controls have a maximum of 32 channels.

Mute Button

Mute turns on/off the channel. **Identifier** provides a custom label, when the dialog box is minimized (see below).

Right-clicking over certain settings will provide a menu of additional options. Control Dialog Boxes for Mute Button components can be minimized to create user control surfaces (see Customizing Component Objects).


When placed from the Object Toolbar, multiple Mute Buttons may be 'ganged' together onto a single button. Ganged Mute Buttons display a 'G' in the upper-right of the Component Object, and Identifier colors are reversed on the Control Dialog. Non-ganged Mute Buttons have a maximum of 16 channels, whereas ganged Mute Buttons have a maximum of 32 channels. Also, Mute Button blocks may be placed with control input nodes selected.

Preset Button

Right-clicking over a button provides a list of available Presets which can be assigned to that button. The Preset Number will appear on the button, and the Preset Name will appear to the right. Preset Numbers can be replaced with the word 'Recall' (see General Options). Control Dialog Boxes for Preset Button components can be minimized to create user control surfaces (see Customizing Component Objects).

Remote Preset Button

Remote Preset Buttons are identical to <u>Preset Buttons</u>, except they have control input nodes on the block. These control input nodes allow presets to be recalled via control output nodes on other component blocks. This provides remote control of preset selection, both from internal components and external controls. Unlike most other blocks, multiple control output nodes may be connected to a single control input node on a Remote Preset Button. Control Dialog Boxes for Remote Preset Button components can be minimized to create user control surfaces (see Customizing Component Objects).

Logic Gates

Most Logic Gates have no Control Dialog Boxes. They are used only to customize behavior of other control functions in the system. Logic Gates are connected between the output and input control nodes of other components in the layout. These components can represent internal or external control functions.

Examples

Internal: Auto Mixer output nodes; Ducker input/output nodes; Remote Preset Button input nodes.

External: Select 8 output nodes; Volume/Select 8 output nodes; Logic Box input/output nodes.

Logic Gates alter the normal operation of component control outputs in the following ways:

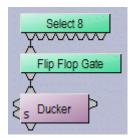
<u>NOT</u>: produces opposite/inverted operation (input HIGH turns output LOW; input LOW turns output HIGH).

AND: all inputs HIGH causes output to go HIGH (any inputs LOW causes output to go LOW).

NAND: all inputs HIGH causes output to go LOW (any inputs LOW causes output to go HIGH).

OR: any inputs HIGH causes output to go HIGH (all inputs LOW causes output to go LOW).

NOR: any inputs HIGH causes output to go LOW (all inputs LOW causes output to go HIGH).


XOR: any inputs (except all) HIGH causes output to go HIGH (all inputs LOW / HIGH causes output to go LOW).

Flip Flop: produces toggle/latching operation (input HIGH changes output state, HIGH / LOW).

Logic State: provides manual latching operation only (includes no input node).

NOTES: NOT and Flip Flop gates have only a single input per output, whereas most other gates have multiple inputs, up to 8. Flip Flop gates provide a control dialog box, for establishing their initial output state. Also, unlike most other blocks, multiple control output nodes may be connected to a single control input node on a Flip Flop gate. Control Dialog boxes for Logic State gates can be minimized to create user control surfaces (see Customizing Component Objects).

Sample Application

Normally, a Select 8 control output connected to a Ducker control input provides a momentary operation (ducking occurs only as long as the Select 8 control is being pressed). However, connecting a Flip Flop Logic Gate between the Select 8 control output and the Ducker control input produces a press-on/press-off operation (ducking begins with the first press of the Select 8 control, and ceases only upon a second press of the Select 8 control).

Logic Delay

Logic Delays are connected between the output and input control nodes of other components in the layout. These other components may represent internal or external control functions. When a change (on/off) occurs at the Logic Delay input, and remains in that condition beyond the designated delay time, the Logic Delay output will then produce that same change..

On sets turn on delay. **OFF** sets turn off delay. The range for either selection is 0~60,000mS (1 minute). **Bypass** disables the delay without changing settings.

Right-clicking over certain settings will provide a menu of additional options.

Command String

Command String blocks allow RS-232 control of external devices via NEXIA's Serial port. Control input nodes along the top of the block produce corresponding serial commands, when triggered by control output nodes on other components within the design. Commands can also be initiated using the command button which appears within the control dialog box. Command ID allows the command/button to be named. Command String allows the appropriate character string to be entered. Update sends the character string to be stored in NEXIA device memory.

Unlike most other blocks, multiple control output nodes may be connected to a single control input node on a Command String block. Control Dialog Boxes for Command String components can be minimized to create user control surfaces (see Customizing Component Objects).

NOTE: Some command strings may need to output nonprintable characters. The strings themselves must be printable, so this is done by including three-character sequences in the command string. The first will be a tilde, the second and third hex digits. To include a carriage return and line feed pair, for example, in the string, include the text ~0d~0a (either case may be used). A tilde may only be included by using the sequence ~7E (or ~7e) for the tilde character itself.

Volume 8

The Volume 8 is an external control device, which allows adjustment of eight selectable NEXIA volumes. Volumes can be individual or grouped levels within NEXIA. This includes Level Control blocks, as well as level adjustments found in the Control Dialog boxes of other component blocks.

Volume 8 is represented in the layout as a block with no audio or control connections. All functions are assigned using the control dialog box. **Object Code** selects from a list of blocks found in the layout, and **Instance ID** is entered automatically, but both can be found easily using <u>Object ID</u> <u>Inspector</u>. **Control ID** selects from a list of available levels within the chosen block. Volume up/down buttons allow control of assigned levels directly from the dialog box. **Identifier** provides a custom label, when the dialog box is minimized (see below).

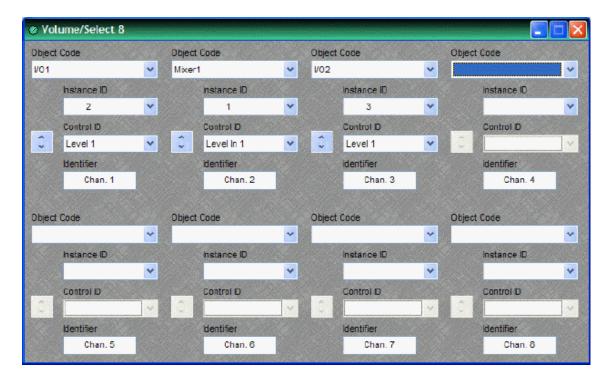
Control Dialog Boxes for Volume 8 components can be minimized to create user control surfaces (see <u>Customizing Component Objects</u>).

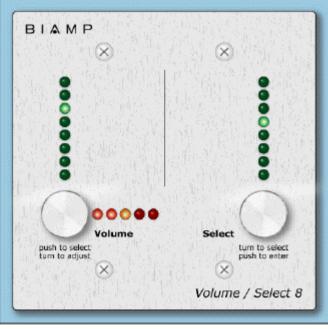
Volume 8 controls fit most US standard single-gang back-boxes (back-boxes are available separately from Biamp Systems). Custom <u>Control Labels</u> may be printed for the Volume 8. Please refer to the '<u>Installation Guide</u>' (included with controls), or see <u>Remote Control Bus</u> for more information. External controls must be identified (see <u>Device Maintenance</u>) and associated with their corresponding component blocks within the layout (see <u>Equipment Table</u>).

Select 8

The Select 8 is an external control device, which allows initiation of eight selectable NEXIA actions. Actions can be individual or grouped functions within NEXIA. This includes recalling presets, ducking, combining, etc.

Select 8 components have no Control Dialog Boxes. They are represented in the layout as a block with eight control output nodes. These control output nodes are connected to control input nodes on the other component blocks to be controlled. These other components may include Remote Preset Buttons, Duckers, Room Combiners, and Logic Boxes. Muting and room combining routines can also be achieved using presets. Logic Boxes can provide logic outputs for controlling additional equipment, external to NEXIA.

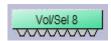

Select 8 behavior can be altered using Logic Gates.



Select 8 controls fit most US standard single-gang back-boxes (back-boxes are available separately from Biamp Systems). Custom <u>Control Labels</u> may be printed for the Select 8.

Please refer to the 'Installation Guide' (included with controls), or see Remote Control Bus for more information. External controls must be identified (see Device Maintenance) and associated with their corresponding component blocks within the layout (see Equipment Table).

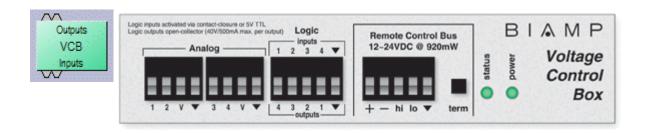
Volume/Select 8



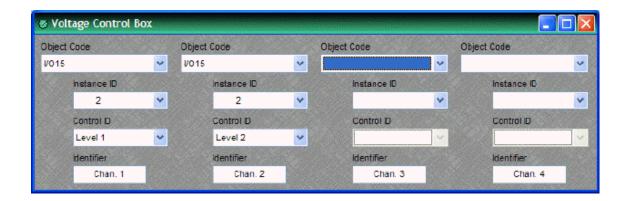
The Volume 8 is an external control device, which combines the functions of both Volume 8 and Select 8 controls. Therefore, the Volume/Select 8 is represented with a control dialog box (for volume functions), as well as a component block with control output nodes (for select functions).

Control Dialog Boxes for Volume/Select 8 components can be minimized to create user control surfaces (see Customizing Component Objects).

Volume/Select 8 controls fit most US standard 2-gang back-boxes (back-boxes are available separately from Biamp Systems).


Custom <u>Control Labels</u> may be printed for the Volume/Select 8. Please refer to the '<u>Installation Guide</u>' (included with controls), or see <u>Remote Control Bus</u> for more information. External controls must be identified (see <u>Device Maintenance</u>)

and associated with their corresponding component blocks within the layout (see Equipment Table).

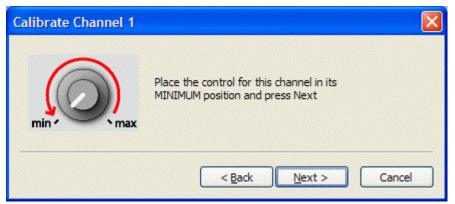

Voltage Control Box

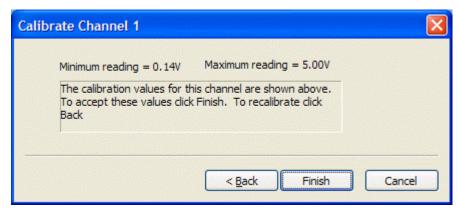
The Voltage Control Box (VCB) is an external control device, which provides four analog potentiometer inputs and four logic inputs/outputs. When a VCB is placed, an Initialization Properties dialog box appears for assigning the quantities of logic inputs/outputs (4 total). Although the quantity of logic connections on a Voltage Control Box (4) is different from those on a Logic Box (20), their operation and behavior are identical. (See Logic Box for further explanation of logic inputs/outputs).

Once a VCB block has been placed, double-clicking it will produce a dialog for assigning Analog (potentiometer) controls. A single VCB allows potentiometer adjustment of up to four selectable Nexia levels. Levels can be individual or ganged levels within Nexia. This includes Level Control blocks, as well as levels within other component blocks (such as Inputs & Outputs, Mixers, Equalizers, etc.). **Object Code** selects from a list of blocks found in the layout, and Instance ID is entered automatically, but both can be found easily using Object ID Inspector. **Control ID** selects from a list of available levels within the chosen block. Identifier provides a custom label for the assigned control.

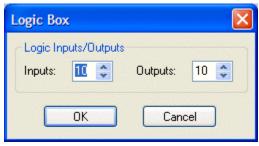
External controls must be identified (see <u>Device Maintenance</u>) and associated with their corresponding component blocks within the layout (see <u>Equipment Table</u>). The VCB will assume a full range of 0~5 Volts returning from connected potentiometers, unless the <u>VCB Calibration</u> procedure is followed (see <u>Device Maintenance</u>). Please refer to the '<u>Installation Guide</u>' (included with controls), or see <u>Remote Control Bus</u> for more information.

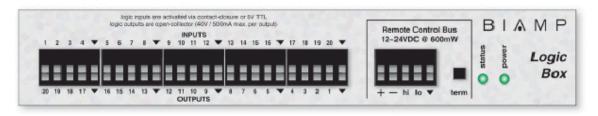
VCB Calibration


Once a VCB (<u>Voltage Control Box</u>) block has been assigned in a Nexia configuration, and the VCB device (with potentiometers attached) is connected to the Nexia <u>Remote Control Bus</u>, the potentiometers can be calibrated for accurate tracking of levels (see <u>Device Maintenance</u>).


The first screen encountered in this process allows for the selection of the potentiometer Channel to be calibrated. Channel numbers correspond to the Analog potentiometer connections on the VCB itself. Only one potentiometer Channel can be calibrated at a time, and only Channels with potentiometers actually connected will be available.

Once the Channel has been selected, this screen will prompt the user to adjust the corresponding potentiometer (on the selected Channel) to its maximum (highest) physical setting, then select "Next".

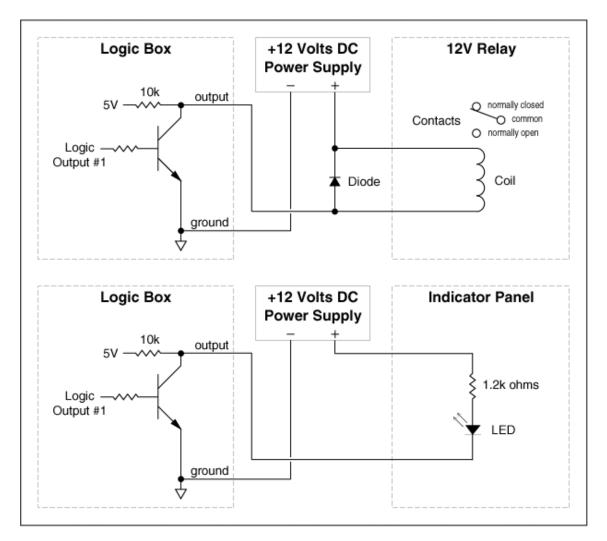

Once the maximum potentiometer setting has been recorded, this screen will prompt the user to adjust the same potentiometer to its minimum (lowest) physical setting, then select "Next".


When maximum and minimum potentiometer settings have both been recorded, this screen will indicate the voltage measurements and prompt the user to either accept these values or recalibrate. "Finish" will return to the Channel selection screen.

NOTE: The entire range of level adjustment assigned to a potentiometer will be controlled by the voltage range measured during calibration. If the potentiometer is not calibrated, or is calibrated incorrectly, accurate control of the intended range of levels may not be achieved.

Logic Box

The Logic Box is an external control device, which provides twenty logic input/output connections. When a Logic Box is placed, an Initialization Properties dialog box appears for assigning the quantities of logic inputs/outputs (20 total). Logic inputs allow external switches to initiate NEXIA actions. Actions can be individual or grouped functions within NEXIA. This includes recalling presets, ducking, combining, etc. Logic outputs can be used to control additional equipment, external to NEXIA.


Logic Box components have no Control Dialog Boxes. They are represented in the layout as a block with a total of twenty control input/output nodes. Logic Inputs (on the box) are represented as control output nodes (on the block). These control output nodes may be connected to control input nodes on other components, such as Remote Preset Buttons, Room Combiners, Duckers, Mute Buttons, and Level Inc/Dec controls. Logic Outputs (on the box) are represented as control input nodes (on the block). These control input nodes may be connected to control output nodes on other components, such as Auto Mixers, Duckers, and Select 8. Unlike other components, Logic Box output nodes may be connected to input nodes on the same Logic Box block, allowing Logic Inputs (external switches) to control Logic Outputs (external equipment).

Logic Box behavior can be altered using <u>Logic Gates</u>. Please refer to the <u>'Installation Guide'</u> (included with controls), or see <u>Remote Control Bus</u> for more information. External controls must be identified (see <u>Device Maintenance</u>) and associated with their corresponding component blocks within the layout (see <u>Equipment Table</u>).

Up to 20 logic inputs are availble on the Logic Box. Logic inputs allow remote control of NEXIA via external circuits such as switches, relays, and logic outputs from other devices. When nothing is connected to a logic input, an internal pull-up resistor keeps it at a 'high' state (+5.0 VDC). The logic input is activated when its input goes 'low' (less than +0.8 VDC), and is deactivated when its input goes 'high' (greater than +2.0 VDC). A logic input can be controlled in one of three ways: 1) Using an 'open-collector' or 'open-drain' logic output from an external device to short the logic input to ground. 2) Using a switch, relay, or other contact-closure to short the logic input to ground. 3) Using an active 5V TTL output driver circuit (such as from a third-party controller) to actively drive the logic input to a 'high' or 'low' state. Multiple contact-closures or 'open-collector'/'open-drain' logic outputs may be wired in parallel to a single logic input (see diagram below). Open-collector or open-drain logic outputs and contact-closures should be rated for at least 5 Volts / 1mA operation. Active output driver circuits should not exceed a signal range of 0~5 Volts DC, and should have a minimum pulse width of 10 milliseconds. The logic input impedance is approximately 10k ohms.

The Logic Box provides up to 20 logic outputs. Logic outputs can be used to control relays and indicators or to drive logic inputs of other devices. The Logic Box logic outputs are 'open collector' with an internal pull-up. Each logic output is an NPN transistor with the collector being the output and the emitter being ground (see diagram below). When a logic output is turned on, the transistor provides a path for DC current to flow, lowering the output voltage to below 0.8V. When a logic output is turned off, the internal pull-up resistor raises the output voltage to near 5V, depending on the output current. To activate external relays or indicators, an external power supply must be used (see diagram below). The logic output transistors are rated up to a maximum of 40 VDC and 500 mA per output (24 volt relay coils maximum). However, +12 Volts DC is sufficient power for most applications. When using the logic outputs to control relays, protection diodes must be used to suppress high voltage transients that are generated when the relays turn off (see diagram below).

Control Labels

The Volume 8, Select 8, and Volume/Select 8 controls all come with a sheet of clear, adhesive-backed labels, for custom printing on a laser printer. A Word document is available on the NEXIA software CD and on the Biamp web site (www.biamp.com), as a label printing template. These labels are meant to be printed using desk-top laser printers only. It is recommended that the printer be set for 'label' printing, and the label sheet should be 'short-edge' feed from the 'bypass' tray. A test printing of a single label should be done, to assure proper alignment of text. To compensate for any mis-alignment of text, margins within the Word document may be adjusted. Care should be taken in placement of the labels onto the controls. To avoid finger-prints, the use of a knife-blade or tweezers is recommended for handling. Severe bending or curling of the label may cause loss of some toner (text). When placing the label on the control panel, use the vertical column of LED indicators as a visual reference of alignment. Once the label is in place, a second (un-printed) label may be placed over the first label, to provide protection against wear. Each sheet contains 25 labels, so in case of errors, additional labels may be printed.

NOTE: Originally, labels were 1.35" wide and used the Word document (V8S8 Labels.doc). However, newer control panels require labels which are only 1.25" wide and use Word document (V8S8 B Labels.doc). Check label width and use the appropriate file for printing.

In the Word document, select Show Gridlines from the Table menu. Each large cell represents a label. The first four columns are 'left-justified' to create labels for *Volume 8* and *Select 8* panels, as well as for the 'Volume' (left) section of *Volume/Select 8* panels. The last column is 'right-justified' to create labels for the 'Select' (right) section of *Volume/Select 8* panels. Left-click inside any large cell, and begin typing. Use 'Enter' to begin a new line, and again to leave a blank line. To avoid printing errors, do not change line-spacing or other formatting parameters. However, if you do not have the default font (Helvetica), or if you wish to change label appearance, you may select a different font before typing.

Meters

Meters

These Component Objects provide Signal Present, Peak, RMS, and Logic metering functions. Meters may be connected to any component output, and may be used for diagnostic and setup purposes, or for applications which require real-time metering. Meters are available in predefined configurations, however, the configuration may be customized when being placed from the Object Toolbar.

Once a Component Object is placed into the Layout, all available settings can be accessed by double-clicking over the object. This produces a Control Dialog Box, which displays the component controls in a more conventional user interface.

See Signal Present Meter Control Dialog

■see Peak Meter Control Dialog

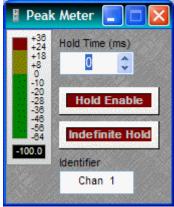
see RMS Meter Control Dialog

■see Logic Meter Control Dialog

Right-clicking over the object provides a pop-up menu of options. Control Dialog Boxes for Meters components can be minimized to create user control surfaces (see Customizing Component Objects).

Control Dialogs

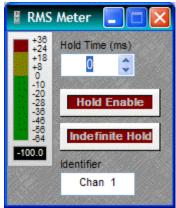
Signal Present Meter



Threshold determines at what level the signal present indicator will light. **Identifier** provides a custom label, when dialog box is minimized (see below).

Right-clicking over certain settings will provide a menu of additional options. Control Dialog Boxes for Meter components can be minimized to create user control

surfaces (see Customizing Component Objects).


Peak Meter

A peak-reading meter & numeric display indicate signal level. **Hold Time** determines how long the meter will display the most recent level increase. **Hold Enable** turns the Hold Time function on/off. **Indefinite Hold** causes the Hold function to be continuous, updating the display only when levels increase beyond the current reading. **Identifier** provides a custom label, when dialog box is minimized (see below).

Right-clicking over certain settings will provide a menu of additional options. Control Dialog Boxes for Meter components can be minimized to create user control surfaces (see Customizing Component Objects).

RMS Meter

An RMS-reading meter & numeric display indicate signal level. **Hold Time** determines how long the meter will display the most recent level increase. **Hold Enable** turns the Hold Time function on/off. **Indefinite Hold** causes the Hold function to be continuous, updating the display only when levels increase beyond the current reading. **Identifier** provides a custom label, when dialog box is minimized (see below).

Right-clicking over certain settings will provide a menu of additional options. Control Dialog Boxes for Meter components can be minimized to create user control surfaces (see Customizing Component Objects).

Logic Meter

The logic indicator will light when the control input node is driven 'high' by any logic related connection. **Identifier** provides a custom label, when dialog box is minimized (see below).

Right-clicking over certain settings will provide a menu of additional options. Control Dialog Boxes for Meter components can be minimized to create user control surfaces (see <u>Customizing Component Objects</u>).

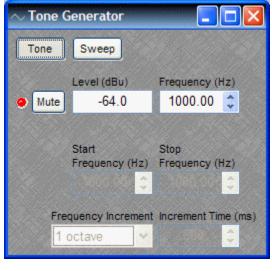
Generators

Generators

These Component Objects provide sine-wave, sweep, pink-noise, and white-noise generator functions. Generators may be connected to any component input, and may be used for diagnostic and setup purposes, or for applications which require tones or sound-masking.

Once a Component Object is placed into the Layout, all available settings can be accessed by double-clicking over the object. This produces a Control Dialog Box, which displays the component controls in a more conventional user interface.

see Tone Generator Control Dialog


see Pink Noise Generator Control Dialog

see White Noise Generator Control Dialog

Right-clicking over the object provides a pop-up menu of options.

Control Dialogs

Tone Generator

Tone selects a single frequency. Sweep selects a range of frequencies (instead of a single tone). Mute turns on/off the generator. Level determines the generator output level. Frequency determines the frequency for Tone. Start Frequency & Stop Frequency determine the range of frequencies for Sweep. Frequency Interval selects the spacing (and quantity) of individual tones for Sweep. Time Interval determines the time each tone is held for Sweep.

Right-clicking over certain settings will provide a menu of additional options.

Pink Noise Generator

Mute turns on/off the generator. **Level** determines generator output level.

Right-clicking over certain settings will provide a menu of additional

options.

White Noise Generator

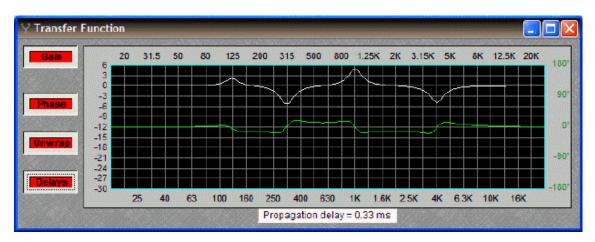
Mute turns on/off the generator. **Level** determines generator output level.

Right-clicking over certain settings will provide a menu of additional options.

Diagnostics

Diagnostics

These Component Objects provide Transfer Function displays for diagnostic purposes. Transfer Function may be connected between any two component outputs on the same signal path, for a comparative analysis of processing.


Once a Component Object is placed into the Layout, all available settings can be accessed by double-clicking over the object. This produces a Control Dialog Box, which displays the component controls in a more conventional user interface.

See Transfer Function Control Dialog

Right-clicking over the object provides a pop-up menu of options.

Control Dialogs

Transfer Function

Transfer Function may be connected between any two component outputs on the same signal path, for a comparative analysis of processing. **Gain** displays the difference in frequency response between the two comparison points, as a white line. **Phase** displays the phase relationship between the two comparison points, as a green line. **Unwrap** removes out-of-range phase rotations from the phase display. **Delays** adds the effect of user-placed delay blocks (Delay and Matrix Mixer w/ Delay) into the phase display. The Phase display does not indicate inherent propagation delay within the system. **Propagation delay** is indicated separately at the bottom of the dialog box (1/3mS hops, if not compiled...or...real-time including equalization delay, if compiled). When a Transfer Function dialog box is open, the associated signal path is indicated as a dashed red line in the layout.

Specialty

Specialty

These Component Objects provide Pass-Through and Split Pass-Through functions, to aid in the organization of system connections. Pass-Through blocks allow wiring nodes to be strategically placed, so audio or control (logic) signals can be routed in different directions. Split Pass-Through blocks allow associated input and output wiring nodes to be placed in separate locations, with an implicit or 'wireless' connection being maintained between them.

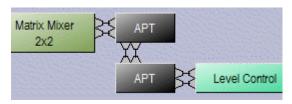
Pass Through and Split Pass Through blocks simply allow custom signal routing, and provide no actual processing of their own. Therefore, they do not have Control Dialog Boxes. Instead, an Initialization Properties window appears, for component definition and customization, when these blocks are placed into the Layout.

■see Pass-Through

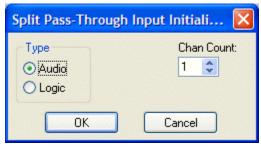
■see Split Pass-Through Input

■see Split Pass-Through Output

Control Dialogs

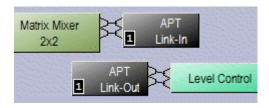

Pass-Through

Pass-Through blocks allow wiring nodes to be strategically placed, so audio or control (logic) signals can be routed in different directions.

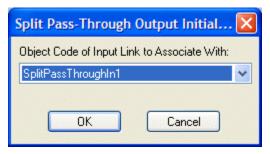

Type selects whether the block is for audio or logic connections. Channel Count selects the quantity of input/output connections to be provided on the block. Signal In determines the physical location of input wiring nodes on the block. Signal Out determines the physical location of output wiring nodes on

the block.

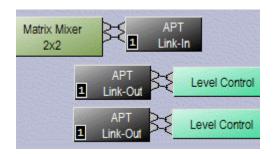
Pass-Through blocks allow custom signal routing and labeling, but provide no actual signal processing. **APT** stands for Audio Pass-Through. **LPT** stands for Logic Pass-Through. This example shows a pair of 2-channel Audio Pass-Through blocks used to create a doublebend.


Split Pass-Through Input

Split Pass-Through blocks allow associated input and output wiring nodes to be placed in separate locations, with an implicit or 'wireless' connection being maintained between them.


Type selects whether the blocks are for audio or logic connections. **Channel Count** selects the quantity of input/output connections to be provided on the blocks.

Separate 'Link-In' and 'Link-Out' blocks are placed for input and output connections. Wiring nodes appear on the left side of input blocks and on the right side of output blocks. Link-In and Link-Out blocks are also numbered to identify their association. More than one Link-Out block can be placed in association with an existing Link-In block (see Split Pass-Through Output).


Split Pass-Through blocks allow custom signal routing and labeling, but provide no actual signal processing. **APT** stands for Audio Pass-Through. **LPT** stands for Logic Pass-Through. This example shows a 2-channel Audio Split Pass-Through.

Split Pass-Through Output

More than one Link-Out block can be placed in association with an existing Link-In block (see <u>Split Pass-Through Input</u>).

Object Code of Input Link to Associate With selects which existing Link-In block the new Link-Out block should be associated with. The new Link-Out block will include the appropriate number of output wiring nodes, and the same numbered association, as other Link-Out blocks already associated with the selected Link-In block.

Additional Link-Out blocks allow a single set of input connections to be distributed to multiple sets of output connections.

Pass-Through blocks allow custom signal routing and labeling, but provide no actual signal processing. **APT** stands for Audio Pass-Through. **LPT** stands for Logic Pass-Through. This example shows an existing 2-channel Audio Split Pass-Through with an additional 2-channel Link-Out block.

System Design

Placing Component Objects

System design begins with the placement of Component Objects into the Layout. This can be done in two ways. The simplest way is to select a component category from the Processing Library, and then drag & drop a pre-defined component into the Layout. Processing Library component categories can also be selected from the Processing Library Menu (at the top of the screen), which indicates keyboard short-cuts as well. However, component placement can instead be done using the Object Toolbar, located directly above the Layout. On the Object Toolbar, next to each category icon is a drop-down menu of components. Selecting a component from the menu, then clicking over the Layout, will place the selected component at that location. Holding the Shift key allows multiple copies of the component to be placed. Certain components will provide a pop-up 'Initialization Properties' window, allowing further component definition and customization before placement. Using the Object Bar also allows the Processing Library to be closed (providing greater width to the Layout). Component Objects, and their current settings (DSP data), can also be placed using the Copy/Paste functions on the Standard Toolbar or the Edit Menu. Selected objects can also be copied by holding the Alt key while dragging and dropping. NOTE: Components cannot be selected when the current Layer is invisible (see Layers Sheet).

The configuration of certain components can be further edited, once they have been placed into the <u>Layout</u>. This can be done even after the design has been <u>compiled</u>, and without affecting the component <u>Instance ID</u> assignments. Right-clicking over the component block and selecting 'Edit Block Parameters' will again provide access to the Initialization Properties window, where additional changes to the component configuration may be made. **NOTE**: Edit Block Parameters is not available for all component types or configuration properties.

Arranging Component Objects

The physical arrangement of objects within the Layout can be modified in several ways. Objects can be packed side-by-side, have their edges aligned, be centered in the view, be spaced evenly, and be made the same size. Objects can also be arranged from front to back, when multiple objects are overlaid. In addition, objects can be forced to snap to an adjustable grid. See <u>Layout Toolbar</u> and <u>Layout Menu</u>. Objects within the Layout can also be organized in separate groups called Layers (see <u>Layout Sheet</u>).

Connecting Component Objects

Each Component Object includes Nodes for making system wiring connections. Nodes are provided in four types, each with a specific location on the Component Object. Audio input Nodes are always on the left. Audio output Nodes are always on the right. Control (logic) input Nodes are always on the top. Control (logic) output Nodes are always on the bottom. An exception to these rules is the Pass-Through block, which allows wiring nodes to be strategically placed for routing signals in different directions. When an object (such as a Ducker) includes an audio control (sense) input, it will be below the normal audio inputs (on the left).

To make a connection, click on a Node, move the mouse to a corresponding Node, and click again to place a Line Object (wire). Multiple Nodes on one or more objects can be selected as a group (click & drag to select). Then, by clicking on the top selected Node, these multiple Nodes may be connected to a matching set of multiple Nodes on one or more other objects, in the same manner as described previously for a single connection.

Segmented lines, with bend points, may also be drawn by simply clicking in the <u>Layout</u> (instead of on a destination Node). This produces a bend point, from which additional line segments may be drawn. Each additional click produces a new line segment, ultimately ending at the destination Node. Bend points allow a line to include angles, which can be useful in organizing the design. If a mistake is made while drawing line segments, double-clicking will erase the entire line.

Bend points are normally constrained to the <u>Grid</u>, making it easier to create straight lines and right-angles. When creating right-angles, horizontal audio line segments retain their vertical spacing (aligned with Nodes/Grid), and vertical line segments form a single bus of overlying lines. However, with logic line segments, vertical lines retain their spacing and horizontal lines form a single bus. The positioning of line segments and bend points, on a selected line, may be edited with the following short-cuts: *Line Click* = move a line segment; *Line Shift-Click* = move a line bus; *Bend Click* = move a bend point; *Line Alt-Click* = add a bend point; *Bend Shift-Alt-Click* = delete a bend point. When drawing a line: *Ctrl* = not constrained to Grid; *Shift* = fan-out connections (single line to multiple Nodes). An entire Line Object (wire) or individual Node connection can be moved (but not copied). The appearance & properties of Line Objects (wires) in the Layout, including the ability to add identifying text to a line, can be changed (see <u>Format Toolbar</u> and <u>Line Property Sheet</u>). Text may be added or edited on a line by selecting the line and pressing Enter, or by right-clicking on the line and selecting Edit Text. However, other text attributes must still be addressed via the Property Sheet.

An output Node can be connected to multiple input Nodes, but an input Node cannot be connected to multiple output Nodes. (*NOTE:* Exceptions to this rule are the control input nodes of Remote Preset, Command String, and Flip Flop Gate blocks.) Audio Nodes & Control (logic) Nodes cannot be connected to each other. Input & Output Nodes on the same object cannot be connected to each other. (*NOTE:* An exception to this rule is the control input and control output nodes of a Logic Box or Voltage Control Box block.) Nodes of the same type (Input or Output) cannot be connected together.

Component Object Properties

Component Object Properties are the control settings available for each component. These represent the same settings normally found on equivalent analog audio products. Component Object Properties for a selected component can be viewed/edited (in table form) using the Object Property Sheet. They can also be copied & pasted (as DSP Data) between components of the same type, using the Edit Menu. However, once a Component Object is placed into the Layout, all available settings can be accessed by double-clicking over the object. This produces a Control Dialog Box, which displays the component controls in a more conventional user interface.

There are several Component Object categories, with some categories providing several component variations. Each component type will have a unique Control Dialog Box. For more information on specific components and their Control Dialog Boxes, see Object Toolbar.

Customizing Component Objects

Component Objects can be customized in several ways. First, when using the Object Toolbar to place components into the Layout, certain components will present the user with a pop-up 'Initialization Properties' window of configuration options. Several pre-defined configuration (input/output) options may be available for the component, as well as a 'custom' selection that allows the user to more specifically configure the component. Some components (such as Auto Mixers) allow activation of additional features (such as Logic Inputs & Direct Outputs). Multiple channels of Level, Invert, & Mute may be 'ganged' onto a single control. Multi-channel Invert and Mute Buttons may be set for 'horizontal alignment' and/or 'no labeling' when minimized as a user control. The configuration of certain components can be further edited, even after they have been placed in the Layout and the design has been compiled (see Placing Component Objects). Line Objects (wires) can have identifying text added (see Line Property Sheet).

Actual component settings can be customized through Control Dialog Boxes (see Component Object Properties). Control Dialog Boxes for certain Combiners, Dynamics, Controls, Meters, & Telephone Interface components can be minimized to create customized control surfaces (room combiners, meters, level controls, mute buttons, preset buttons, telephone dialers, etc.). These control surfaces can then be made user accessible, with other system components hidden on Layers which are invisible to the user, and which are Password protected. (See Software User Interface.)

Individual or multiple Component Objects can be customized, connected, and then saved as new Component Objects in the <u>Processing Library</u>. This can be done by selecting the desired object(s) in the Layout, then pressing the *Alt* key and dragging the object(s) into an appropriate category in the Processing Library. The *Alt* key can also be used to drag object(s) between design (.NEX) files, and to copy objects within the same Layout. Right-clicking over objects (to Copy) and then right-clicking over a Processing Library category (to Paste), can also be used.

Multiple component objects may be merged together using the <u>Custom Blocks</u> menu. Custom Blocks can then be copied to the Processing Library as mentioned above. Custom Blocks can simplify the design process by integrating frequently used component combinations, and can provide password protection for intellectual property such as unique processing and component settings.

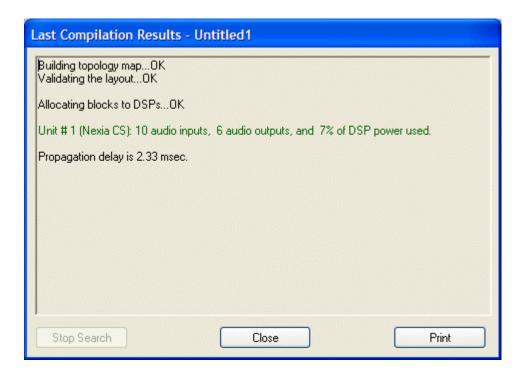
Right-clicking over the Processing Library will also allow new category files (.APL) to be created, for quick access to specialized or often-used components. Existing category files (.APL) can be closed, to customize the Processing Library. All available category files (.APL) can be viewed and opened from the Processing Library Menu and from the Open dialog box. When Processing Library changes are made, the affected category files (.APL) are automatically saved (under Shared Documents).

Object and Layout Text

The size and appearance of both text and objects can be customized. Special Text Objects can be placed into the Layout using the Text cursor on the Object Toolbar. When selected, Component & Text Objects display handles which can be dragged for re-sizing. Right-clicking over an object provides a pop-up menu which includes the Edit Text option. Edit Text can also be accessed for a selected object by simply pressing the Enter key. Text (and object) appearance can be customized using the associated tools on the Format Toolbar. Also, Line Objects (wires) can have identifying text added (see Line Property Sheet).

System Compiling Considerations

Once a system design is created (components placed & connected), the system can be compiled by selecting <u>Compile</u> from either the <u>File Menu</u> or the <u>Standard Toolbar</u>. Compile analyzes the system design and indicates design errors if there are any. If there are no errors, Compile proceeds and allocates the required DSP resources.


Although Compile is an automatic process, certain settings can be pre-determined to help guide this process. Control blocks (i.e., those processing blocks that do not have audio inputs or outputs) can be <u>Allocated To Unit</u>, which assigns them to a particular Nexia device. This can be useful to dedicate particular control functions to specific physical locations, for example, to have all RCB devices wired to the same unit using a single cable.

Propagation Delay (also known as Latency) is an inherent time delay of the audio signals, which increases with the amount of DSP processing and NexLink routing applied. Each NexLink 'hop' (one-way transmission) produces 0.67mS delay. Therefore, system outputs can have different amounts of propagation delay. Compile determines worst-case propagation delay for a system, and applies Delay Equalization to synchronize all audio outputs. In applications where audio output synchronization is not important (audibly isolated areas), then Delay Equalization may be disabled on individual Input Output components (DSP blocks) or system wide. See Object Property Sheet and Compile Options.

For visual aids in determining DSP block allocations, see <u>Display Options</u>. A system design file must be compiled before it can be downloaded to NEXIA devices (see <u>Send Configuration</u>).

Compile results may be reviewed at any time (see <u>Tools Menu</u> > <u>Layout Compile Results</u>).

Example of Compile results for a simple system

■see a list of possible Compile Error Messages

Compile Error Messages

Validation of the Topology Map

Message: The Automatic Mixer (object code '__') at [__,__] has no active audio output.
Explanation: An Auto Mixer Main Output is connected to a Mix-Minus Combiner input, but appropriate audio output connections have not been made.
Mix-Minus Combiners allow Auto Mixers to share control data only, and do not support audio input or output.

Message: Unintended use of Combiner block detected.

<u>Explanation</u>: A source, other than an <u>Auto Mixer</u> Main Output, is connected to a <u>Mix-Minus Combiner</u> input. Mix-Minus Combiners allow Auto Mixers to share control data only, and do not support audio input or output.

Message: The main output of an Auto Mixer is connected to more than one Combiner block.

Explanation: The main output of an Auto Mixer can be connected to only a single Combiner input (Mix-Minus or Room). Otherwise, Auto Mixer control data might be shared with multiple groups of combined mixers, causing convoluted behavior.

Message: Empty layout!

Explanation: No objects have been placed in the layout.

Messages: There are no audio sources or destinations.

There are no audio sources.

and 'Ignores' automatically.

There are no audio destinations.

Explanation: No audio input/output objects have been placed (or connected) in the layout.

Messages: Some DSP blocks do not have inputs. Ignore them?

Some DSP blocks do not have outputs. Ignore them?

Explanation: These messages appear only if the flag 'Prompt To Stop Compilation

On Warnings' is set under Tools>Options>Compile. If the choice to

'Ignore' is selected, then the warning "Ignored '...' (object code '...') at

___, __]" will be listed in the compile results. If the 'Prompt To Stop

Compilation On Warnings' flag is not set, then compilation proceeds

Messages: The algorithm for the '__' block (object code '__') at [__,__] has been deprecated.

You should replace the existing block with a newly created one which uses the most up to date algorithm.

You should replace the existing blocks with newly created ones which use the most up to date algorithms.

Explanation: The first warning is issued for each DSP block in the layout that is considered outdated. One of the subsequent messages will also appear, depending upon whether there is only one outdated block or multiple outdated blocks detected.

Messages: The algorithm for the '__' block (object code '__') at [__,__] has been eliminated.

You should replace the existing block with a newly created one which uses the most up to date algorithm.

You should replace the existing blocks with newly created ones which use the most up to date algorithms.

<u>Explanation</u>: These messages are similar to the ones above. The difference is that they are not warnings, but errors.

Message: Nothing to compile!

Explanation: All objects placed in layout have been ignored.

Message: Feedback loop detected.

<u>Explanation</u>: The potential exists for an audio path to be indirectly looped back upon itself. This condition could be dangerous, and is not allowed.

Allocation of DSP blocks to NEXIA Devices

<u>Message</u>: The allocation of some DSP blocks cannot be resolved. You should use <u>NexLink</u> I/O blocks to pass audio signals between units.

Explanation: This system design attempts to pass audio signal(s) from one Nexia unit to another. Use a pair of NexLink Input and Output blocks to accomplish this.

Message: Too many resources required in the unit #_.

Too many resources required in the units ## .

<u>Explanation</u>: The design requires more <u>DSP resources</u> than are available from the Nexia device(s) specified in the <u>Equipment Table</u>.

Message: Due to insufficient DSP resources all disjoint blocks have been ignored.

Explanation: There are not enough DSP resources available in any Nexia unit in the

system. The compiler chose to ignore all blocks which are isolated from any I/O blocks and, therefore, do not affect the rest of the system in any way.

Message: Total maximal duration of delays exceeded in the unit #_.

Explanation: The number of delay blocks, and their combined delay ranges, exceeds the maximum capability of this unit. Currently, any single NEXIA unit can provide a maximum of 15 seconds of delay blocks.

Matrix Mixers with Delay also contribute to this total, consuming 1 second per input channel.

Allocation of DSP blocks to DSPs

Message: Allocating blocks to DSPs...failed to set up a feasible DSP task schedule in the unit #__.

Explanation: Although the total DSP power in the NEXIA unit is sufficient, compile was not able to distribute the component objects among the available DSPs. When the DSP load approaches 100%, it becomes crucial that the objects be distributed more uniformly. Try moving certain objects to another unit, or replace them with a comparable set of smaller objects (within the same unit). Otherwise, it may be necessary to add an additional NEXIA unit to the system, and move large DSP blocks into it.

Assigning control blocks to NEXIA units

Message: Some unconnected control blocks have been ignored.

<u>Explanation</u>: Control blocks with no connections have been excluded from the system. Only <u>Logic Gate</u>, <u>Logic Delay</u>, and <u>Remote Preset Button</u> blocks can be ignored. When connected to the system, control dialogs for ignored blocks cannot be accessed.

Message: Feedback detected in the control network.

Explanation: The potential exists for a control path to be indirectly looped back upon itself. This condition could be dangerous, and is not allowed.

Message: Unit #__ has too many control connections.

Explanation: Although quite large, there is a limit to the quantity of control connections within a single unit. Connections include both internal (source and destination within same unit) and external links (source or destination within this unit). Try moving certain control objects to another unit (using <u>fixed allocations</u>),

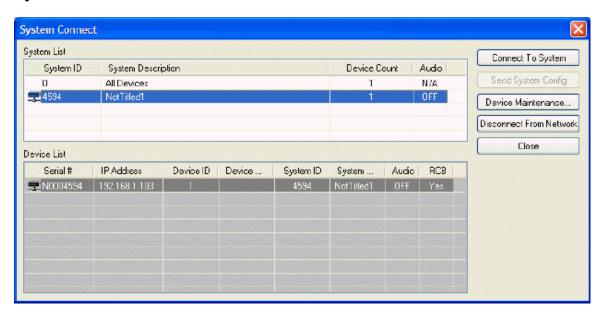
Setting up the NEXIA units after a successful compilation

Messages: Available range of Instance IDs is nearly exhausted.

Range of Instance IDs has been exhausted.

Explanation: The total number of Instance IDs, as assigned to component and line objects, is limited to 65,535. When component objects are removed from a design, their Instance IDs are not automatically re-assigned to new component objects. Therefore, the messages above indicate that a significant number of Instance IDs has been wasted. Set 'Reassign Instance IDs' under Tools>Options>Compile and re-compile to recover wasted Instance IDs. CAUTION: This will change most component Instance IDs, and will render existing external control command scripts useless (unless Instance ID Tags have been used in lieu of Instance ID numbers). Once Instance IDs have been recovered, turn off 'Reassign Instance IDs' to avoid further re-assignments.

System Network Considerations


Ethernet allows multiple NEXIA devices to be connected on a network, for system-wide programming and control. Ethernet supports <u>Software User Interface</u>, <u>Remote Control Bus</u>, and <u>Third-Party Control</u>, but does not include sharing of digital audio signals via <u>NexLink</u>.

The PC computer, running NEXIA software under Windows® XP Professiona/Vista, must have a 10/100 BaseT network card (NIC) installed. When connecting directly to the Ethernet port on a single NEXIA unit, a 'cross-over' CAT5 cable is used. When connecting to a network (or system) of multiple NEXIA units, a 'straight-through' CAT5 cable is used (via an Ethernet switch). Ethernet switches (not 'hubs') must be 10/100 BaseT compatible, with sufficient ports for connection to each NEXIA unit (multiple switches may be used). These connections also use 'straight-through' CAT5 cables. When a system using only two NEXIA devices has been configured, and the computer connection is removed, Ethernet may be connected directly between the two units using a 'cross-over' CAT5 cable.

Ethernet has a cable length limitation of 100 meters, between the Ethernet switch and a NEXIA device. However, fiber-optic cable may be used to extend this distance limitation to 2 km. Fiber-optic cable can be used with switches that have fiber-optic ports, or media converters can be used to interface fiber-optic cable with standard RJ-45 ports. **NOTE:** Distances between devices in systems utilizing NexLink are restricted to a maximum length of 5 meters for each NexLink cable. NexLink is proprietary and is not Ethernet compatible. Therefore, Ethernet switches cannot be used within NexLink cabling.

The computer must be assigned an IP address (under Network Card Settings>Properties). Most computers set TCP/IP address automatically, but NEXIA devices require manual assignment. Initially, the computer IP addresses should be assigned as **192.168.1.X** (where range of X = 1~254). Each NEXIA device must also be assigned a unique IP address (see Device Maintenance). The factory default IP address for all NEXIA devices is 192.168.1.101.

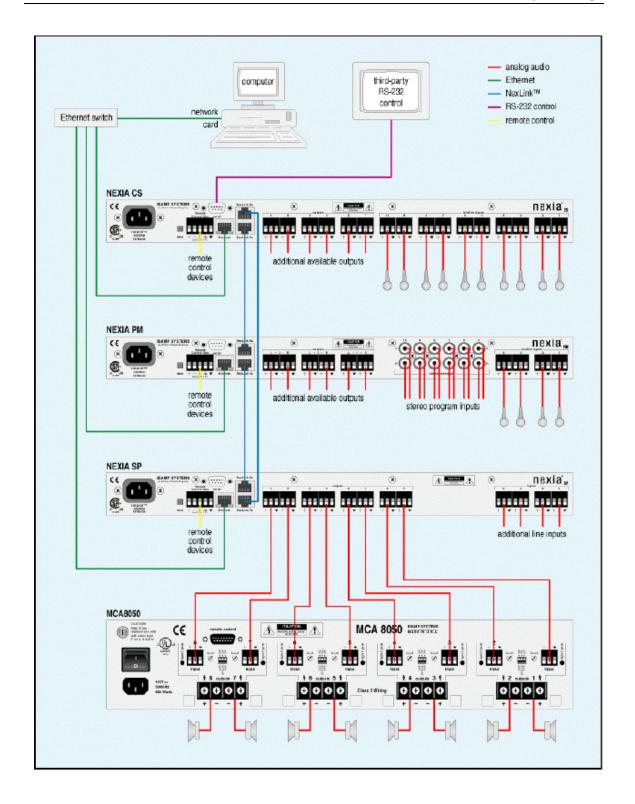
Many system designs require only a single NEXIA device. These systems do not exceed the number of inputs/outputs, and the amount of DSP processing, provided by one specific model. When a single unit is used, network considerations are simplified. No Ethernet switch is required. The only Ethernet connection is that between the computer and the NEXIA device ('cross-over' CAT5 cable). A 'cross-over' cable is included with each NEXIA device.

System Connect Considerations

The System Connect screen provides a **System List** (configured devices only) and a **Device List** (all configured and non-configured devices). When a selection is made in the System List, **Connect To System** will establish communication with, and retrieve the configuration from, the device(s) in that system. **Send System Config** will attempt to send an open file of a properly compiled system configuration to the device(s) specified in the <u>Equipment Table</u>. If the specified device(s) have an existing system configuration, they may need to be <u>Reset/Initialized</u> before a new configuration can be sent successfully. Reset/Initialize, as well as other device related settings, can be accessed by selecting **Device Maintenance**.

Nexia software now employs the concept of "multi-client sessions". This is simply the capability for multiple users to be connected to the same system simultaneously. Multi-client sessions also allow a single user (PC) to be connected to multiple systems. In addition, a single user (PC) can even have multiple connections to the same system. These multi-client sessions can include connections from both Nexia software and daVinci control software.

Multi-client sessions include two 'privilege levels'. A High Privilege Session (designated HPS in the <u>Status Bar</u>) is assigned to the first user connected to the system. HPS allows all system maintenance normally associated with that specific user (see <u>Passwords</u>). Any additional connections to that system will be Low Privilege Sessions (designated LPS in the <u>Status Bar</u>), which allow system control only, regardless of user. When an HPS user disconnects, privilege levels do not update (connected users remain LPS), and the next new user connection is assigned as HPS.


<u>Send Configuration</u> and specific <u>Device Maintenance</u> functions (Reset/Initialize, Set IP Address, and Update Firmware) are not allowed during a multi-client session. All other system users must disconnect before these functions can be performed. Send Configuration often affects multiple devices, which will be unavailable to other users during this process. Device Maintenance functions affect individual devices, which will be unavailable to other users during this process.

NOTE: An exception to both situations mentioned above is when all other users are connected via <u>daVinci</u> control software. Send Configuration & Device Maintenance are allowed under these circumstances, and will automatically terminate any daVinci sessions.

System Hardware Connections

For wiring information on specific connectors, see <u>CS Hardware</u>, <u>PM Hardware</u>, <u>SP Hardware</u>, <u>VC Hardware</u>, or <u>TC Hardware</u>.

Example of system connections

Proper Gain Structure

Proper gain structure is important because it affects signal-to-noise performance and available headroom within a sound system. Every sound system has some inherent noise, whether it be self-generated by the internal electronics or induced into the signal path by external sources. Therefore, unnecessarily low gain settings can result in signal levels which are significantly closer to the noise floor, potentially causing a sound system to appear noisy. Conversely, excessive gain settings may cause the audio signal to overdrive the electronics, resulting in severe distortion due to clipping of the audio waveform. Besides being audibly undesirable, a distorted waveform can also cause damage to some system components, such as loudspeakers.

In addition to its influence on signal-to-noise and available headroom, gain structure can affect other aspects of sound system behavior. In particular, some audio components rely on signal strength as part of their normal operation. These components may not perform as expected if they receive signals that are lower, or higher, or even just different from what is anticipated. Examples of such components are: Auto Mixers, Duckers, Levelers, Comp/Limiters, Ambient Noise Compensators (ANC), and Acoustic Echo Cancellers (AEC).

Auto Mixer, Ducker, Leveler, and Comp/Limiter functions are triggered by input signals that exceed a specified threshold. With Levelers and Comp/Limiters, signal levels below threshold are not considered unusual (they simply are not affected by the component). However, Auto Mixers will not pass signals that are below threshold, and Duckers will not automatically attenuate program signal if the sensing input signal is below threshold. Furthermore, signals containing a large amount of background noise can falsely trigger these components, if the level is set too high and/or the threshold is set too low. It should also be noted that any real-time control of signal levels should not occur before these types of components. For example, control of individual Auto Mixer channels should not take place ahead of the Auto Mixer. Instead, the Auto Mixer Input Level controls (which are post-threshold) may be used for this purpose.

Ambient Noise Compensation (ANC) relies on a continuous and accurate model of the program signal level, to differentiate it from changes in the ambient noise level. So, real-time control of levels <u>should not occur after</u> this type of component. Acoustic Echo Cancellation (AEC) relies on a continuous and accurate model of the signal to be cancelled from the microphones. So, any real-time control of signal levels at the loudspeaker output <u>should be duplicated</u> for the AEC Reference. If these signals are different, a 2-channel 'ganged' Level control may be used.

What is proper gain structure? Generally speaking, proper gain structure is establishing and maintaining good signal strength throughout the entire sound system. In most cases, this means that the relative volume of loudspeakers should ultimately be determined by <u>adjustment of the power amplifiers</u> (after prior system gain settings have been established). Other system outputs (such as recording feeds) may require lower levels, which should be established by <u>selecting an appropriate reference level at the output itself</u>. Other than real-time level control (as described previously), <u>signal attenuation within the system should be avoided</u>.

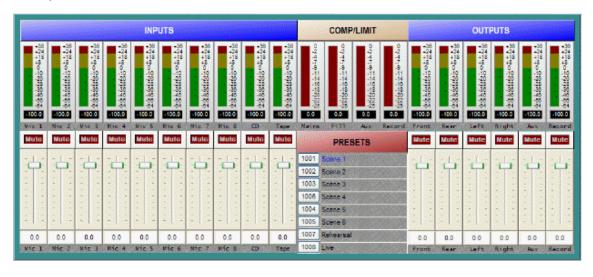
To establish proper gain structure, the primary element is input gain. Each system input provides adjustable Gain In (trim), with an associated Peak indicator. For best performance, increase gain on a given input until the Peak indicator just begins to flash on normal signal content. The Peak indicator first comes on with 6dB of headroom remaining (before clipping occurs). To provide additional headroom (allowing for louder input signals), it is recommended that gain then be reduced by 12dB (two 6dB decrements). To monitor system levels, Peak Meters should be connected at strategic points in the signal path, including at the inputs. With gain settings as described above, input meters should indicate peak levels between 6dB and 10dB on normal signal content (14dB ~ 18dB of headroom). This will provide good signal-to-noise performance, with a safety margin of available headroom.

Throughout the rest of the system, various components will include level adjustment capabilities (faders). By default, these faders are typically at 0dB (unity gain). This is a very good setting for most applications, and does not necessarily need to be changed. However, any of these faders can be used for real-time level control (as described above). Of course, faders can be used to 'mix' multiple signals at differing levels (i.e. microphones at 0dB and music at -10dB). Faders can also be used to compensate for gain reduction (Leveling, Comp/Limiting, etc.) which may have occurred earlier in the signal path. *Note:* Floating Point DSPs allow this type of gain staging without the danger of clipping distortion or the loss of data bits. As long as signal levels do not exceed maximum at the inputs or outputs (A/D & D/A converters), extremely high and low level signals can be tolerated without negative impact on quality. However, remember that some system components do not function well without proper signal strength (as described previously).

Applications

Application Bulletin (.pdf) files are available on the NEXIA software CD-ROM. The associated design (.NEX) files for these applications are also included, as example references.

System Control


Software User Interface

Once a system design is <u>compiled</u> and <u>downloaded</u> into NEXIA devices, the system can be controlled in real-time the via the NEXIA software. The extent of control can be limited with different <u>password levels</u>.

In addition, <u>Control Dialog Boxes</u> for certain <u>Combiners</u>, <u>Dynamics</u>, <u>Controls</u>, & <u>Meters</u> components can be minimized to create customized control surfaces (room combiners, meters, level controls, mute buttons, & preset buttons). These control surfaces can then be made accessible to the User, only with a specific <u>Password</u>.

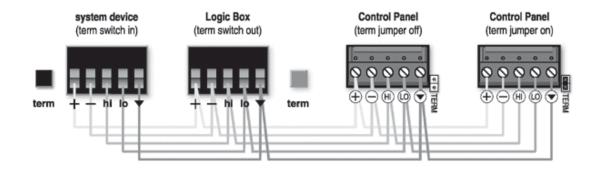
These control surfaces remain functional, even if other component settings are made inaccessible to the User (via <u>Password Level</u>). The control surfaces can also remain visible, even if the components they represent are made invisible (via <u>Layer View</u>). Therefore, a custom User control surface can be created in the Layout, with User access allowed, but with all other system settings inaccessible (and hidden). The size & shape of the Layout may be changed, and Toolbars hidden, to customize the appearance of the User control screen.

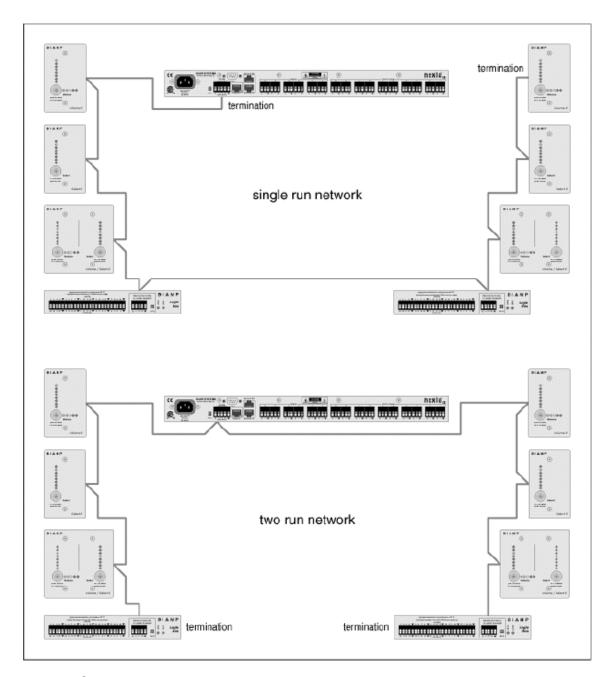
Example of user control surface

Remote Control Bus

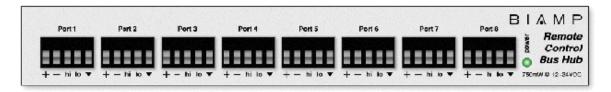
Remote Control Bus provides the connection for <u>Volume 8</u>, <u>Select 8</u>, <u>Volume/Select 8</u>, <u>Voltage</u> Control Box, and Logic Box external control devices.

Each NEXIA device can support any combination of the controls mentioned above. Up to 12 controls may be connected to each NEXIA device, on a daisy-chain 'network', with a maximum cable length of 1000 feet (300 meters). A Remote Control Bus Hub allows multiple branches on a control network.

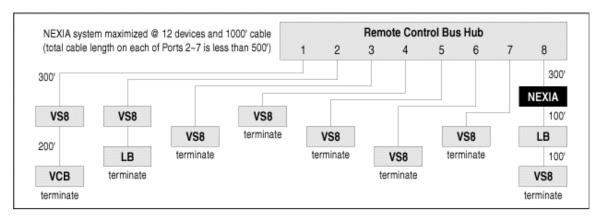

Cabling and power for an RCB network can be calculated using a program (NexiaRCBCabling.hta) found under Program Files/Nexia/Ultilities. Controls are wired in parallel (pin-for-pin), using 5-conductor data grade cable (95~120 ohms nominal impedance; 16 pF/ft. max. capacitance; 65% min. velocity of prop.).


Recommended cable: Gepco 18/22AXL, Liberty AXLINK, Liberty CRESNET, or equivalent (use data pair for Hi & Lo; use power pair for + & -).

The 'network' requires termination at each 'end' for proper operation. All controls (and NEXIA) include either a termination switch or jumper strap. These terminations should be disabled (switch out or jumper removed) on all devices except those at the two extreme ends of the network. (See wiring diagram below).


A control network may be wired with the NEXIA device at one end, and a control device at the other end, creating one continuous run. In this case, the NEXIA device would have the 'term' switch engaged (in), and the control device at the other end of the network would have the 'term' switch engaged (in) or jumper installed. All other controls, between the NEXIA device and the last control, would have their 'term' switches released (out) or jumpers removed.

If a control network needs to service two areas which are in opposite directions from the NEXIA device, a network with two separate runs can be created. This type of network actually remains as a single run, but is configured with the NEXIA device in the middle. Therefore, only the controls at the two extreme ends of the network would have their 'term' switches engaged (in) or jumpers installed. All other controls (including the NEXIA device), between the two end controls, would have their 'term' switches released (out) or jumpers removed. (See network diagrams below.)



Remote Control Bus Hub

The Remote Control Bus Hub provides eight parallel ports for the connection of remote control devices to an Nexia® system. Each port can accept multiple remote controls connected in a 5-wire daisy-chain. A single Hub, connected to a single Nexia unit, allows multiple branches to be added to the remote control network. Also, maximum cable length is calculated only across the two longest network branches, thereby effectively extending the network range. The Remote Control Bus Hub can be used with any combination of control devices, including Volume 8, Select 8, Volume/Select 8, Logic Box, and Voltage Control Box.

Example Control Network

Third-Party Control

After initial programming & configuration, NEXIA systems may be controlled by RS-232 communication from third-party control systems such as AMX® or Crestron®, using the Serial Control Port. See RS-232 and Telnet Protocol.

RS-232 and Telnet Protocol

Overview

Nexia can be controlled via the control dialogs in the Nexia software, or via third-party controllers using RS-232 or Telnet.

For control of Nexia, Biamp created NTP (Nexia Text Protocol). This simply means that Nexia will accept strings of ASCII characters to control and read settings of gain, mute, logic state, frequency, audio levels, and other parameters of DSP Blocks in Nexia products.

NTP strings can be sent via third-party controllers using RS-232 (see RS-232 Control) or Telnet via TCP/IP (see Telnet Control). A line feed needs to be sent after each command string sent.

The NTP string is structured in the following order:

Command DeviceNumber Attribute InstanceID Index1 Index2 Value <LF>

NTP strings require a space between each parameter; the last character in the string needs to be a line feed <LF>. A space is not required before a line feed, but is acceptable and is used in examples shown in this manual (for legibility only). A space normally proceeds the carriage return/line feed <CR><LF> in a response to a GET command (see Command and Responses).

For each control string a few components will need to be derived from the Nexia software: Device Number, InstanceID, and Index. Command and Attribute are derived from this document. In a SET command, Value is used to specify what the DSP block attribute is to be set to. In an increment or decrement (INC or DEC) command Value is used to specify how much the DSP block attribute is to be changed by.

Note Nexia software will assign an Instance ID number to each DSP block on the initial Compile of the system. Subsequent compiles will not change the Instance ID numbers unless the "Reassign Instance IDs" check box is selected in the 'Compile' tab of the 'Options' screen (located on the Tools pull-down menu) in the Nexia software. Custom names (Instance ID Tags) may be assigned to DSP blocks, and used in lieu of Instance ID numbers within NTP command strings.

Example: A string to control a Fader Level might look like this: SET 1 FDRLVL 2 1 9 <LF>.

The individual components for this string are:

Command	Device #	Attribute	Instance ID	Index1	Index2	Value	Line feed
SET	1	FDRLVL	2	1	none	9	<lf></lf>

Notice that Index2 is not used since there is nothing entered in this parameter.

Example: A string to Mute a Standard Mixer Output: SET 3 SMMUTEOUT 5 5 1 <LF>

The individual components for this string are:

Command	Device #	Attribute	Instance ID	In dex1	Index2	Value	Line feed
SET	3	SMMUTEOUT	5	none	5	1	<lf></lf>

Notice that Index1 is not used since there is nothing entered in this parameter.

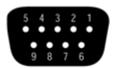
Example: A string to turn up (increment) a Crosspoint on a Matrix Mixer: **INC 2 MMLVLXP 4 3 2 1 <LF>**

The individual components for this string are:

Command	Device #	Attribute	Instance ID	In dex1	Index2	Value	Line feed
INC	2	MMLVLXP	4	3	2	1	<lf></lf>

In this example Index1 and Index2 are both used, together they specify which Crosspoint to change.

RS-232 Control


The RS-232 port on the back of an Nexia unit is set to a default baud rate of 38400, 8 data bits, no parity, 1 stop bit, and no flow control. (38400:8:None:1). If multiple Nexias are connected together in a system then only one RS-232 port needs to be connected to a third-party control system; communication data is shared via Ethernet through a switch.

When controlling multiple Nexia units that are not part of the same NEX file, each Nexia unit will need to be addressed via its own RS-232 port from a control system or PC. Nexia units cannot be linked together via RS-232, like some other BIAMP products can.

(The RS-232 baud rate can be set to 9600, 19200, 38400, 57600, or 115200 – default is 38400)

A straight through PC Serial Cable is used to communicate from an RS-232 port on a third-party controller (or PC*) to the RS-232 port located on the back of an Nexia unit.

Since the Nexia's serial port does not implement flow control, waiting for a response from the Nexia is essential prior to sending the next command. After receiving the +OK response, the next command can be sent. By waiting for the +OK response, the serial buffer will not be overloaded.


```
pin #1 = not usedpin #6 = not usedpin #2 = Transmit Data (TxD) outputpin #7 = not usedpin #3 = Receive Data (RxD) inputpin #8 = not usedpin #4 = not usedpin #9 = not usedpin #5 = ground
```

(* A PC can send/receive NTP Strings, using a terminal emulator program such as HyperTerminal.)

Telnet Control

Nexia can be controlled using Telnet via TCP/IP. The same command strings that are used for RS-232 Control are used for Telnet.

When controlling multiple Nexias that are not a part of the same NEX file, each Nexia device will need to be addressed via its own Telnet session from a control system or PC.

Nexia supports standard Telnet Echo Negotiation. By default, the Telnet server will echo characters sent to it, one by one.

To turn echo OFF during a session:

Send byte sequence 0xFF 0xFE 0x01.

Receive 3 byte response from server (0xFF 0xFC 0x01 = echo OFF).

Send desired commands.

To turn echo back ON during a session:

Send byte sequence 0xFF 0xFD 0x01.

Receive 3 byte response from server (0xFF 0xFB 0x01 = echo ON).

Send desired commands.

Command

SET – Tells Nexia that a DSP attribute is to be set to a specific value – may contain negative numbers and/or decimal points

GET - Tells Nexia that a DSP attribute is to be read – the response may contain a decimal point and/or a negative number (see Responses).

INC - Tells Nexia that a DSP attribute is to be incremented by a specific amount

DEC- Tells Nexia that a DSP attribute is to be decremented by a specific amount

RECALL – Tells Nexia that a preset is to be recalled.

DIAL – Tells the Nexia that a dial command is being sent

SETL and GETL can be used if negative numbers and/or decimals are not supported by a control system.

SETL – Tells Nexia that a DSP attribute is to be set to a specific value, no decimal places or negative numbers –To convert a dB number: add 100 to the desired level and then multiply by 10.

Example: To set a level to -60.5dB, add 100 (-60.5 + 100 = 39.5). Then multiply by 10 (39.5 X 10 = 395). Instead of Value being -60.5, Value after this SETL command will equal 395.

GETL - Tells Nexia that a DSP attribute is to be read without negative numbers or decimals. To convert this number to dB: divide the number by 10, then subtract 100.

Example: With a returned GETL response of 405, divide by 10 (405 / 10 = 40.5), and then subtract 100 (40.5 - 100 = -59.5dB)

For your reference, the SETL/GETL Table on the following page shows .5dB increments converted into the SETL/GETL format.

Some Attributes do not support all commands. The <u>Attribute</u> section defines which commands support SET/SETL, GET/GETL, INC, or DEC functions. RECALL is only used on preset commands. DIAL is only used on telephone dialing commands.

*When GET or GETL is used, a <u>Value</u> will not need to be specified since GET/GETL is a request command. A Value must be specified in order for strings with SET/SETL, INC, DEC, and RECALL to work.

Note: SETD, GETD, INCD, DECD, SETLD, and GETLD commands may be used when a 'full path' serial response to the command is desired (see <u>Responses</u>). A 'full path' serial response will provide identification of the target object, the original command, and the resulting value or state.

Level	Value	Level	Value	Level	Value	Level	Value	Level	Value
12	1120	-10.5	895	-33	670	-55.5	445	-78	220
11.5	1115	-11	890	-33.5	665	-56	440	-79.5	215
11	1110	-11.5	885	-34	660	-56.5	435	-79	210
10.5	1105	-12	880	-34.5	655	-57	430	-79.5	205
10	1100	-12.5	875	-35	650	-57.5	425	-80	200
9.5	1095	-13	870	-35.5	645	-58	420	-80.5	195
9	1090	-13.5	865	-36	640	-58.5	415	-81	190
8.5	1085	-14	860	-36.5	635	-59	410	-81.5	185
8	1080	-14.5	855	-37	630	-59.5	405	-82.5	175
7.5	1075	-15	850	-37.5	625	-60	400	-83	170
7	1070	-15.5	845	-38	620	-60.5	395	-83.5	165
6.5	1065	-16	840	-38.5	615	-61	390	-84	160
6	1060	-16.5	835	-39	610	-61.5	385	-84.5	155
5.5	1055	-17	830	-39.5	605	-62	380	-85	150
5	1050	-17.5	825	-40	600	-62.5	375	-85.5	145
4.5	1045	-18	820	-40.5	595	-63	370	-86	140
4	1040	-18.5	815	-41	590	-63.5	365	-86.5	135
3.5	1035	-19	810	-41.5	585	-64	360	-87	130
3	1030	-19.5	805	-42	580	-64.5	355	-87.5	125
2.5	1025	-20	800	-42.5	575	-65	350	-88	120
2	1020	-20.5	795	-43	570	-65.5	345	-88.5	115
1.5	1015	-21	790	-43.5	565	-66	340	-89	110
1	1010	-21.5	785	-44	560	-66.5	335	-89.5	105
.5	1005	-22	780	-44.5	555	-67	330	-90	100
0	1000	-22.5	775	-45	550	-67.5	325	-90.5	95
5	995	-23	770	-45.5	545	-68	320	-91	90
-1	990	-23.5	765	-46	540	-68.5	315	-91.5	85
-1.5	985	-24	760	-46.5	535	-69	310	-92	80
-2	980	-24.5	755	-47	530	-69.5	305	-92.5	75
-2.5	975	-25	750	-47.5	425	-70	300	-93	70
-3	970	-25.5	745	-48	520	-70.5	295	-93.5	65
-3.5	965	-26	740	-48.5	515	-71	290	-94	60
-4	960	-26.5	735	-49	510	-71.5	285	-94.5	55
-4.5	955	-27	730	-49.5	505	-72	280	-95	50
-5	950	-27.5	725	-50	500	-72.5	275	-95.5	45
-5.5	945	-28	720	-50.5	495	-73	270	-96	40
-6	940	-28.5	715	-51	490	-73.5	265	-96.5	35
-6.5	935	-29	710	-51.5	485	-74	260	-97	30
-7	930	-2.5	705	-52	480	-74.5	255	-97.5	25
-7.5	925	-30	700	-52.5	475	-75	250	-98	20
-8	920	-30.5	695	-53	470	-75.5	245	-98.5	15
-8.5	915	-31	690	-53.5	465	-76	240	-99	10
-9	910	-31.5	685	-54	460	-76.5	235	-99.5	5
		-32				-77		-100	0
-10	900		675		450				
-7 -7.5 -8 -8.5 -9 -9.5	930 925 920 915 910 905	-2.5 -30 -30.5 -31 -31.5	705 700 695 690 685 680	-52 -52.5 -53 -53.5	480 475 470 465 460 455	-74.5 -75 -75.5 -76 -76.5	255 250 245 240	-97.5 -98 -98.5 -99 -99.5	25 20 15 10 5

Device Number


A Nexia Device Number represents the physical Nexia box's defined address. The Nexia software automatically sets this number when a system is Compiled and loaded.

The Device number that a DSP block has been assigned to can be determined in 3 ways:

First Way:

- 1. Right click on the DSP block and select 'Properties'.
- Click on DSP 1 attributes tab and scroll down. The device that the block is assigned to will be

displayed in the 'Allocated To Unit' field.

Second Way:

1. In the <u>Display</u> tab of the <u>Options</u> screen select "Display Device Assignment in DSP

Block info field". This will display the device that each DSP block is assigned to on the main screen.

Third Way:

1. While connected an Nexia's RS-232 port, type the string; GET 0 DEVID

Nexia will return the Device Number of the unit you are connected to.

Attribute

The Attribute defines the portion of the DSP block to be controlled (fader level, crosspoint mute etc). The following tables show whether each NTP Attribute supports SET/SETL, GET/GETL, INC, and DEC <u>Commands</u>, as well as the <u>Value</u> range that the Attribute will accept. Index1/Index2 determines whether <u>Index1</u>, <u>Index2</u> or BOTH are needed for a NTP String to be complete.

NTP Strings can address: (click on the links to view the tables in each topic)

Input/Output Blocks

Mixer Blocks

Equalizer Blocks

Filter Blocks

Crossover Blocks

Dynamics Blocks

Router Blocks

Delay Blocks

Control Blocks

Meter Blocks

Generator Blocks

Input/Output Blocks

The following table of Attributes is valid for all Nexia input blocks <u>except</u> Nexia PM Stereo Line Inputs, Nexia TC & Nexia VC AEC Inputs, and Nexia TC & Nexia VC Pre-AEC Inputs.

Analog Inputs	Attribute	Commands	Index	Value Range
Input Gain	INPGAIN	SET, SETL, GET, GETL, INC, DEC	1	0, 6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66
Input Level	INPLVL	SET, SETL, GET, GETL, INC, DEC	1	-100 ~ 12 *
Phantom Power	PHPWR	SET, GET	1	0 = off 1 = on
Input Mute	INPMUTE	SET, GET	1	0 = unmuted
				1 = muted

Invert Polarity	INPINVRT	SET, GET	1	0 =normal
				1 = inverted

* Can contain a decimal number.

Note: Nexia SP Line Inputs only support input gain values of 0, 6, 12, & 18 (dB).

Example: Set Device 1 Input Level at Instance ID 6, Input 3 to -10dB.

Command	Dev#	Attribute	Inst ID	Index 1	Index 2	Value	Line Feed
SET	1	INPLVL	6	3	None	-10	<lf></lf>

Result: SET 1 INPLVL 6 3 -10 <LF>

The following table of Attributes is valid for all Nexia output blocks <u>except</u> Nexia PM Stereo Line Outputs.

Outputs	Attribute	Commands	Index	Value Range
Output	OUTLVL	SET, SETL, GET, GETL, INC, DEC	2	-100 ~ 0 *
Level				
Output	OUTMUTE	SET, GET	2	0 = unmuted
				1 = muted
Output Full	OUTFS	SET, SETL, GET, GETL	2	-31, 0, 6, 12, 18, 24
Scale Level **				
Invert	OUTINVRT	SET, GET	2	0 = normal
Polarity				1 = inverted

* Can contain a decimal number.

Note: Nexia SP Line Outputs do not support the output full scale value of -31 (dBu).

Example: Set Device 2 Output Mute at Instance ID 3, Output 4 to muted.

Command	Dev#	Attribute	Inst ID	Index 1	Index 2	Value	Line Feed
SET	2	OUTMUTE	2	None	4	1	<lf></lf>

Result: SET 2 OUTMUTE 3 4 1 <LF>

The following table of Attributes is valid only for Nexia PM Stereo Line Inputs.

PM Stereo Line Inputs	Attribute	Commands	Index	Value Range
Line Input Gain	INPGAINPML	SET, SETL, GET, GETL, INC, DEC	1	0, 6, 12, 18
Input Level	INPLVLPML	SET, SETL, GET, GETL, INC, DEC	1	-100 ~ 12 *
Input Mute	INPMUTEPML	SET, GET	1	0 = unmuted 1 = muted
Input Invert	INPINVRTPML	SET, GET	1	0 = normal 1 = inverted
Line Input Stereo Linking	INPGANGPML	SET, GET	1	0 = separate 1 = ganged

^{*} Can contain a decimal number.

Note: PM Output faders can be ganged as pairs: 1 & 2, 3 & 4, and 5 & 6.

Index2 is used to indicate either one of the Outputs in the pair to be ganged (not both).

Example: Set Device 1 PM Output Gang at Instance 5 Output 2 to ganged (Outputs 1 & 2 ganged).

Command	Dev#	Attribute	Inst ID	Index 1	Index 2	Value	Line Feed
SET	1	OUTGANGPM	5	None	2	1	<lf></lf>

Result: SET 1 OUTGANGPM 5 2 1 <LF>

The following table of Attributes is valid only for Nexia TC & Nexia VC AEC Inputs.

AEC Inputs	Attribute	Commands	Index	Value Range
Input Gain	AECINPGAIN	SET, SETL, GET, GETL, INC, DEC	1	0, 6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66
Input Level	AECINPLVL	SET, SETL, GET, GETL, INC, DEC	1	-100 ~ 12 *

Phantom Power	AECPHPWR	SET, GET	1	0 = off
				1 = on
Input Mute	AECINPMUTE	SET, GET	1	0 = unmuted
				1 = muted
Invert Polarity	AECINPINVRT	SET, GET	1	0 =normal
				1 = inverted
Enable AEC	AECENABLE	SET, GET	1	0 = off
				1 = on
NLP Strength	AECNLP	SET, GET	1	0 = off
				1 = soft
				2 = medium
				3 = aggressive
Noise Reduction	AECNR	SET, SETL, GET, GETL	1	0, and 6 ~ 15

^{*} Can contain a decimal number.

Example: Set Device 1 AEC NLP Strength at Instance ID 24, Input 3 to aggressive.

Command	Dev#	Attribute	Inst ID	Index 1	Index 2	Value	Line Feed
SET	1	AECNLP	24	3	None	3	<lf></lf>

Result: SET 1 AECNLP 24 3 3 <LF>

Caller ID	TICID	GET	None	None
Full User Caller ID	TICIDUSER	GET	None	None
Hook-Flash	TILINE	FLASH	None	None
Hook-Switch	TIHOOKSTATE	SET, GET	None	0 = off-hook
State				1 = on-hook
Speed Dial	TISDENTRY	SET, GET	1	enter the phone
Tel. Number				number
Speed Dial	TISDLABEL	SET, GET	1	enter the name
Name				

Last Number	TILASTNUM	GET	None	None
Dialed				
Speed Dial	TISPEEDDIAL	DIAL	None	1 ~ 16
Entry to Dial				
Phone Number	TIPHONENUM	DIAL	None	enter the phone
to Dial				number
Redial	TILASTDIALED	DIAL	None	none

Note: The TC can insert delay while dialing a phone number by inserting commas where desired (each comma provides 1 second of delay). Most PBX systems require delay after acquiring an outside line. Also, multiple TIPHONENUM commands can be used to dial the individual digits of a phone number. The TIPHONENUM command has a character limit of 32 characters for the "value" field.

Example: Get Device 1 TC Caller ID Information at Instance 23

Command	Dev#	Attribute	Inst ID	Index 1	Index 2	Value	Line Feed
GET	1	TICID	23	None	None	None	<lf></lf>

Result: GET 1 TICIDUSER 23 <LF>

Note: GET 1 TICID 23 will return: "" if there is no caller ID information available. If there is CID information available, it will return in the format "MMDDHHmmXXXXXXXXXX" where the "X's" represent the ten digit phone number. For example "040211235035551212".

Example: Get Device 1 TC Full User Caller ID Information at Instance 23

Command	Dev#	Attribute	Inst ID	Index 1	Index 2	Value	Line Feed
GET	1	TICIDUSER	23	None	None	None	<lf></lf>

Result: GET 1 TICIDUSER 23 <LF>

Note: GET 1 TICIDUSER 23 will return: "" "" if there is no caller ID information available. The first set of quotes contains the date and time in the format **MMDDHHmm**. The second set of quotes represents the incoming phone number in the format **5036417287**. The third set of quotes contains the name of the caller. If there are quotes contained within the name, there will be a backslash preceding the quotes within the name, i.e. "**David \"Dawg\" Grisman"**.

Example: Set Device 1 TC Speed Dial Entry at Instance 23 Speed Dial 16 to 1-800-826-1457.

	Command	Dev#	Attribute	Inst ID	Index 1	Index 2	Value	Line Feed
-	FLASH	1	TILINE	23	None	None	None	<lf></lf>

Result: FLASH 1 TILINE 23 <LF> (dashes in phone number are optional)

Example: Set Device 1 TC Speed Dial Entry at Instance 23 Speed Dial 16 to 1-800-826-1457.

Command	Dev#	Attribute	Inst ID	Index 1	Index 2	Value	Line Feed
SET	1	TISDENTRY	23	16	None	18008261457	<lf></lf>

Result: SET 1 TISDENTRY 23 16 18008261457<LF> (dashes in phone number are optional)

Example: Dial Device 1 TC Phone Number To Dial at Instance 23 of 1-800-826-1457.

Command	Dev#	Attribute	Inst ID	Index 1	Index 2	Value	Line Feed
DIAL	1	TIPHONENUM	23	None	None	18008261457	<lf></lf>

Result: DIAL 1 TIPHONENUM 23 18008261457<LF> (use DIAL instead of SET/GET commands)

TC Receive	Attribute	Commands	Index	Value Range
Receive Level	TIRXLVL	SET, SETL, GET, GETL, INC, DEC	None	-100 ~ 12 *
Receive Mute	TIRXMUTE	SET, GET	None	0 = unmuted
				1 = muted
Number of	TIAUTOANSWER	SET, GET	None	0 = off

			1, 2, 3, 4, or 5
TIRXLEC	SET, GET	None	0 = off
			1 = on
TIRXNS	SET, GET	None	0 = off
			1 = on

^{*} Can contain a decimal number.

TC Transmit	Attribute	Commands	Index	Value Range
Transmit Level	TITXLVL	SET, SETL, GET, GETL, INC, DEC	None	-100 ~ 0 *
Transmit Mute	TITXMUTE	SET, GET	None	0 = unmuted 1 = muted

^{*} Can contain a decimal number.

Example: Mute the TC Transmit Block at Instance ID 21

Command	Dev#	Attribute	Inst ID	Index 1	Index 2	Value	Line Feed
SET	1	TITXMUTE	21	None	None	1	<lf></lf>

Result: SET 1 TITXMUTE 21 1 <LF>

Mixer Blocks

Automixer	Attribute	Commands	Index	Value Range
Input Level	AMLVLIN	SET, SETL, GET, GETL, INC, DEC	1	-100 ~ 12 *
Output Level	AMLVLOUT	SET, SETL, GET, GETL, INC, DEC	2	-100 ~ 12 *
Input Mute	AMMUTEIN	SET, GET	1	0 = unmuted 1 = muted
Output Mute	AMMUTEOUT	SET, GET	None	0 = unmuted

			1 = muted	
Crosspoint Mute	AMMUTEXP	SET, GET	1 1 =unmuted	
			0 = muted	
Logic Output	AMLOGOUT	GET	2 0 = off	
			1 = on	

^{*} Can contain a decimal number.

Note: Typically, *Index1* represents the input/row, and *Index2* represents the output/column. However, Automixers have only a single output and, therefore, *Index2* is not used to specify an output/column.

Example: Set Device 1 Automixer Crosspoint Mute at Instance 3 Crosspoint 1 to muted.

Command	Dev#	Attribute	Inst ID	Index 1	Index 2	Value	Line Feed
SET	1	AMMUTEXP	3	1	None	0	<lf></lf>

Result: **SET 1 AMMUTEXP 3 1 0 <LF>** (Automixers have only 1 output, so Index2 is not required)

Matrix Mixer	Attribute	Commands	Index	Value Range
Input Level	MMLVLIN	SET, SETL, GET, GETL, INC, DEC	1	-100 ~ 12 *
Output Level	MMLVLOUT	SET, SETL, GET, GETL, INC, DEC	2	-100 ~ 12 *
Input Mute	MMMUTEIN	SET, GET	1	0 = unmuted 1 = muted
Output Mute	MMMUTEOUT	SET, GET	2	0 = unmuted 1 = muted
Crosspoint Level	MMLVLXP	SET, SETL, GET, GETL, INC, DEC	1 & 2	-100 ~ 0 *
Crosspoint Mute	MMMUTEXP	SET, GET	1 & 2	1 = unmuted 0 = muted

^{*} Can contain a decimal number.

Note: For attributes with 2 Index fields, *Index1* is the input/row, and *Index2* is the output/column.

Standard Mixer	Attribute	Commands	Index	Value Range
Input Level	SMLVLIN	SET, SETL, GET, GETL, INC, DEC	1	-100 ~ 12 *
Output Level	SMLVLOUT	SET, SETL, GET, GETL, INC, DEC	2	-100 ~ 12 *
Input Mute	SMMUTEIN	SET, GET	1	0 = unmuted 1 = muted
Output Mute	SMOUTMUTE	SET, GET	2	0 = unmuted 1 = muted
Crosspoint Mute	SMMUTEXP	SET, GET	1 & 2	1 = unmuted 0 = muted

^{*} Can contain a decimal number.

Note: For attributes with 2 Index fields, *Index1* is the input/row, and *Index2* is the output/column.

Room Combiner	Attribute	Commands	Index	Value Range
Wall State	RMCMBGROUP	SET, GET	1	0 = down
				1 = up
Output Level		SET, SETL, GET, GETL, INC, DEC	2	-100 ~ 12 *
Output Mute	RMCMBMUTE	SET, GET	2	0 = unmuted
				1 = muted
Group State	RMCMBGROUP	SET, GET	1	0 ~ 16

^{*} Can contain a decimal number.

Note: For Wall State, *Index1* indicates the wall to be affected and *Value* indicates the actual wall state (down=open=combined; up=closed=separated).

⁺ Note: The behavior of RMCMBGROUP is the same as that of the "Set Selected Group" commands in the right-click-context menus of the Room Combiner dialog screen in Nexia Software: the specified room is either separate (group 0) or combined with other rooms of the selected group (1~16). All other rooms maintain their previous group assignments. Index1 represents the room being addressed. As rooms are combined, room levels become ganged, so only one output level needs to be addressed.

Example: Set Device 1 Room Combiner Wall State at Instance 4 Wall 2 to up (close/separate).

Command	Dev#	Attribute	Inst ID	Index 1	Index 2	Value	Line Feed
SET	1	RMCMBWALL	4	2	None	1	<lf></lf>

Result: SET 1 RMCMBWALL 4 2 1 <LF>

Mix-Minus Combiner	Attribute	Commands	Index	Value Range
Group State	MCMBGROUP	SET, GET	1	0 ~ 32

Note: *Index1* is the input being addressed. *Value* is the group; this is represented by a letter in Nexia software, but addressed as a number in ATP commands. (Example: ungroup=0, A=1, B=2, C=3....)

Equalizer Blocks

Graphic EQ	Attribute	Commands	Index	Value Range
EQ Band	GEQLVLBND	SET, SETL, GET, GETL,	1	-30 ~ 15 *
Level		INC, DEC		
Bypass	GEQBYPALL	SET, GET	none	0 = active
All Bands				1 = bypassed

^{*} Can contain a decimal number.

Note: *Index1* represents the filter to be controlled. Graphic EQ filters are numbered from left to right, and the selected band is displayed in the upper left hand corner of the Graphic EQ dialog screen in Nexia software. Use this number as *Index1* for Graphic EQ strings.

Example: Set Device 2 Graphic EQ Bypass All Bands at Instance 9 to bypass.

Command	Device #	Attribute	Instance ID	Index1	Index2	Value	Line feed
SET	2	GEQBYPALL	9	none	none	1	<lf></lf>

Result: SET 2 GEQBYPALL 9 1 <LF>

Parametric EQ	Attribute	Commands	Index	Value Range
EQ Bandwidth	PEQBWBND	SET, SETL, GET, GETL	1	0.010 ~ 4.000 *
Bypass	PEQBYPBND	SET, GET	1	0 = active
EQ Band				1 = bypassed
Center Freq.	PEQFCBND	SET, SETL, GET, GETL,	1	20 ~ 20000
		INC, DEC		
EQ Band Level	PEQLVLBND	SET, SETL, GET, GETL,	1	-30 ~ 15 *
		INC, DEC		
Bypass	PEQBYPALL	SET, GET	none	0 = active
All Bands				1 = bypassed

^{*} Can contain a decimal number.

Note: *Index1* represents the filter to be controlled. Parametric EQ filters are initially numbered from left to right, and the selected band is displayed in the upper left hand corner of the Parametric EQ dialog screen in Nexia software. Use this number as *Index1* for Parametric EQ strings.

Example: Increment Device 1 Parametric EQ Band Level at Instance 11 Band 2 by 2dB.

Command	Device #	Attribute	Instance ID	Index1	Index2	Value	Line feed
INC	1	PEQLVLBND	11	2	none	2	<lf></lf>

Result: INC 1 PEQLVLBND 11 2 2 <LF>

Feedback Suppressor	Attribute	Commands	Index	Value Range
Reset All Filters	FBSRESET	SET	none	none
Fix All Filters	FBSFIXALL	SET, GET	none	0 = not fixed
				1 = fix all

Example: Set Device 1 Feedback Suppressor Reset All Filters at Instance 4.

Command	Device #	Attribute	Instance ID	Index1	Index2	Value	Line feed
SET	1	FBSRESET	4	none	none	none	<lf></lf>

Result: SET 1 FBSRESET 4 < LF>

Filter Blocks

HPF	Attribute	Commands	Index	Value Range
Cut-Off Freq.	HPFLTFC	SET, SETL, GET, GETL	none	20 ~ 20000 *
Filter Bypass	HPFLTBYP	SET, GET	none	0 = active
				1 = bypassed

^{*} Can contain a decimal number.

LPF	Attribute	Commands	Index	Value Range
Cut-Off Freq.	LPFLTFC	SET, SETL, GET, GETL	none	20 ~ 20000 *
Filter Bypass	LPFLTBYP	SET, GET	none	0 = active
				1 = bypassed

^{*} Can contain a decimal number.

High Shelf	Attribute	Commands	Index	Value Range
Cut-Off Freq.	HSFLTFC	SET, SETL, GET, GETL,	none	20 ~ 20000 *
		INC, DEC		
Gain	HSFLTGAIN	SET, SETL, GET, GETL	none	-27 ~ 9 *
Filter Bypass	HSFLTBYP	SET, GET	none	0 = active
				1 = bypassed

^{*} Can contain a decimal number.

Low Shelf	Attribute	Commands	Index	Value Range
Cut-Off Freq.	LSFLTFC	SET, SETL, GET, GETL,	none	20 ~ 20000 *
		INC, DEC		
Gain	LSFLTGAIN	SET, SETL, GET, GETL	none	-27 ~ 9 *
Filter Bypass	LSFLTBYP	SET, GET	none	0 = active
				1 = bypassed

^{*} Can contain a decimal number.

Example: Set Device 1 High Shelf Filter Gain at Instance 100 to -10dB.

Command	Device #	Attribute	Instance ID	Index1	Index2	Value	Line feed
SET	1	HSFLTGAIN	100	none	none	-10	<lf></lf>

Result: SET 1 HSFLTGAIN 100 -10 <LF>

All-Pass Filter	Attribute	Commands	Index	Value Range
Bandwidth	APFLTBWBND	SET, SETL, GET, GETL	1	0.01 ~ 4.0 *
Center Freq.	APFLTFCBND	SET, SETL, GET, GETL	1	20 ~ 20000 *
Filter Bypass	APFLTBYPBND	SET, GET	1	0 = active
				1 = bypassed
Bypass All	APFLTBYPALL	SET, GET	none	0 = active
				1 = bypassed

^{*} Can contain a decimal number.

Note: *Index1* represents the filter band to be controlled. All-Pass Filter bands are initially numbered from left to right, and the selected band is displayed in the upper left hand corner of the All-Pass Filter dialog screen in Nexia software. Use this number as *Index1* for All-Pass Filter strings.

Crossover Blocks

2-Way	Attribute	Commands	Index	Value Range
Cut-Off Freq.	XOVR2FC	SET, SETL, GET, GETL	1	20 ~ 20000 *

* Can contain a decimal number.

3-Way	Attribute	Commands	Index	Value Range
Cut-Off Freq.	XOVR3FC	SET, SETL, GET, GETL	1	20 ~ 20000 *

* Can contain a decimal number.

4-Way	Attribute	Commands	Index	Value Range
Cut-Off Freq.	XOVR4FC	SET, SETL, GET, GETL	1	20 ~ 20000 *

* Can contain a decimal number.

Notes:

2-way crossover:

Index1 = 1 is the low-pass filter cut-off frequency

Index1 = 2 is the high-pass filter cut-off frequency

3-Way crossover:

Index1 = 1 is low-pass filter cut-off frequency

Index1 = 2 is the lower slope of the mid filter cut-off frequency

Index1 = 3 is the higher slope of the mid filter cut-off frequency

Index1 = 4 is the high-pass filter cut-off frequency

4-way crossover:

Index1 = 1 is the low-pass filter cut-off frequency

Index1 = 2 is the lower slope of the low-mid filter cut-off frequency

Index1 = 3 is the higher slope of the low-mid filter cut-off frequency

Index1 = 4 is the lower slope of the mid-high filter cut-off frequency

Index1 = 5 is the higher slope of the mid-high filter cut-off frequency

Index1 = 6 is the high-pass filter cut-off frequency

Example: Get Device 2 Crossover 3-Way Cut-Off Frequency at Instance 40 Low-Pass filter.

Command	Device #	Attribute	Instance ID	Index1	Index2	Value	Line feed
GET	2	XOVR3FC	40	1	none	none	<lf></lf>

Result: GET 2 XOVR3FC 40 1 <LF>

Dynamics Blocks

Leveler	Attribute	Commands	Index	Value Range
Bypass	LVLRBYP	SET, GET	none	0 = active
				1 = bypassed

Comp/Limiter	Attribute	Commands	Index	Value Range
Bypass	CLIMBYP	SET, GET	none	0 = active
				1 = bypassed

Ducker	Attribute	Commands	Index	Value Range
Input level	DKRLVLIN	SET, SETL, GET, GETL	none	-100 ~ 12 *
Level Sense	DKRLVLSENSE	SET, SETL, GET, GETL	none	-100 ~ 12 *
Bypass	DKRBYP	SET, GET	none	0 = active
Ducker				1 = bypassed
Mute	DKRMUTESENSE	SET, GET	none	0 = unmuted
Sense				1 = muted
Input	DKRMUTEIN	SET, GET	none	0 = unmuted
Mute				1 = muted
Logic In	DKRENLOGIN	SET, GET	none	0 = disabled
Enable				1 = enabled
Logic Out	DKRENLOGOUT	SET, GET	none	0 = disabled
Enable				1 = enabled
Logic Input	DKRINVLOGIN	SET, GET	none	0 = normal
Invert				1 = inverted
Logic Output	DKRINVLOGOUT	SET, GET	none	0 = normal
Invert				1 = inverted

^{*} Can contain a decimal number.

Noise Gate	Attribute	Commands	Index	Value Range
Bypass	NGBYP	SET, GET	none	0 = active
				1 = bypassed

Example: Set Device 3 Noise Gate Bypass at Instance 55 to active.

Command	Device #	Attribute	Instance ID	Index1	Index2	Value	Line feed
SET	3	NGBYP	55	none	none	0	<lf></lf>

Result: SET 3 NGBYP 55 0 <LF>

Router Blocks

Router	Attribute	Commands	Index	Value Range
Crosspoint	RTRMUTEXP	SET, GET, SETD, GETD	1 & 2	1 = unmuted
				0 = muted

Note: For attributes with 2 Index fields, *Index1* is the input/row, and *Index2* is the output/column.

Example: Set Device 1 Router Crosspoint at Instance 98 Row 4 Column 5 to muted.

Command	Dev#	Attribute	Inst ID	Index 1	Index 2	Value	Line Feed

SET	1	RTRMUTEXP	98	4	5	0	<lf></lf>	ĺ
						-		

Result: SET 1 RTRMUTEXP 98 4 5 0 <LF>

Source Selection	Attribute	Commands	Index	Value Range
Source	SRCSELSRC	SET, GET, SETD, GETD	1	0 = No Source/muted
				1 = Source 1
				2 = Source 2
				3 = Source 3
Level	SRCSELLVL	SET, GET, SETL, GETL, SETD, GETD	, 1	-100 ~ 12

Example: Set Device 1 Source Selection Source at Instance 99 Source 2 selected.

Command	Dev#	Attribute	Inst ID	Index 1	Index 2	Value	Line Feed
SET	1	SRCSELSRC	99	1	None	2	<lf></lf>

Result: SET 1 SRCSELSRC 99 1 2 <LF>

Example: Set Device 1 Source Selection Volume at Instance 99 to -54 dB for source input 3.

Command	Dev#	Attribute	Inst ID	Index 1	Index 2	Value	Line Feed
SET	1	SRCSELLVL	99	3	None	-54	<lf></lf>

Result: SET 1 SRCSELLVL 99 3 -54<LF>

In this example, Index 1 represents the input source, where in the previous example, Index 1 represents the output channel.

Delay Blocks

Delay	Attribute	Commands	Index	Value Range
Delay in	DLYMSEC	SET, SETL, GET, GETL	none	0~?*
Milliseconds				
Delay in		SET, SETL, GET, GETL	none	0 ~ ? *
Centimeters	DLYCM			
Delay in Meters	DLYM	SET, SETL, GET, GETL	none	0 ~ ? *
Delay in Inches	DLYIN	SET, SETL, GET, GETL	none	0 ~ ? *
Delay in Feet	DLYFT	SET, SETL, GET, GETL	none	0~?*
Delay Bypass	DLYBYP	SET, GET	none	0 = active
				1 = bypassed

^{*} Can contain a decimal number.

Note: Value Range is from 0 to the maximum value for the specific delay block. For example, a 50mSec delay has a maximum setting of 1717 centimeters, 17 meters, 676 inches, or 56 feet.

Example: Set Device 1 Delay In Centimeters at Instance 24 to 40 centimeters.

Command	Device #	Attribute	Instance ID	Index1	Index2	Value	Line feed
SET	1	DLYCM	24	none	none	40	<lf></lf>

Result: SET 1 DLYCM 24 40 <LF>

Control Blocks

Level Faders	Attribute	Commands	Index	Value Range
Fader Levels	FDRLVL	SET, SETL, GET, GETL,	1	-100 ~ 12 *
		INC, DEC		
Mute Fader	FDRMUTE	SET, GET	1	0 = unmuted
				1 = muted

^{*} Can contain a decimal number.

Mute Button	Attribute	Commands	Index	Value Range
Mute	MBMUTE	SET, GET	1	0 = unmuted
				1 = muted

Logic State	Attribute	Commands	Index	Value Range
Logic State	LGSTATE	SET, GET	1	0 = off
				1 = on

Presets	Attribute	Commands	Index	Value Range
Preset	PRESET	RECALL	none	1001 ~ maximum
				preset number

Note: Instead of SET, SETL, GET, GETL, INC, or DEC; the Preset attribute uses RECALL as the command. Preset numbers begin at 1001. Regardless of preset name, the first preset defined is 1001, the second is 1002, and so forth. However, the numbers of any deleted Presets will not be available. Since Presets apply to entire systems, the Device Number will always be 0 for Preset strings.

Example: Recall Device 0 Preset number 1001.

Command	Device #	Attribute	Instance ID	Index1	Index2	Value	Line feed
RECALL	0	PRESET	none	none	none	1001	<lf></lf>

Result: RECALL 0 PRESET 1001 <LF> (use RECALL instead of SET/GET commands)

Meter Blocks

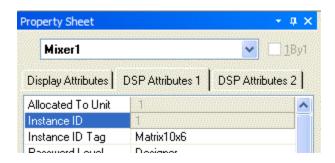
Meters	Attribute	Commands	Index	Value Range
Signal	SPMTRSTATE	GET	1	0 = no signal
				1 = signal
Peak	PKMTRLVL	GET, GETL	1	-100 ~ 36 *
RMS	RMSMTRLVL	GET, GETL	1	-100 ~ 36 *
Logic	LGCMTRSTATE	GET	1	0 = no signal
				1 = signal

^{*} Can contain a decimal number.

Note: Meters only use GET and GETL commands, which do not include a Value. Instead, Nexia will respond to these GET/GETL commands with the requested value (current level).

Example: Get Device 1 RMS Meter Level at Instance 48 Meter 1.

Command	Device #	Attribute	Instance ID	Index1	Index2	Value	Line feed
GET	1	RMSMTRLVL	48	1	none	none	<lf></lf>


Result: **GET 1 RMSMTRLVL 48 1 <LF>** (use GET/GETL commands only)

Generator Blocks

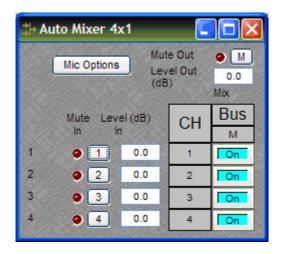
No Attributes are specified at this time

Instance ID

Nexia uses an Instance ID number to specify the exact DSP block to be controlled. Custom names (Instance ID Tags) may be assigned to DSP blocks, and used in lieu of Instance ID numbers within NTP command strings. Instance ID Tags may be up to 32 characters, but may not start with a number. If the Instance ID Tag includes spaces, it must be double-quote delimited ("Instance ID Tag") when used in a command string. The Instance ID number (and Instance ID Tag) can be found by right-clicking the DSP block and selecting "Properties". Both identifiers are available on the DSP Attributes 1 tab.

The property sheet can only be accessed in an off-line screen.

Note Nexia software assigns an Instance ID number to each DSP block on the initial system Compile. Subsequent compiles will not change the Instance ID numbers unless the "Reassign Instance IDs" check box is selected in the 'Compile' tab of the 'Options' screen (located on the Tools menu) in Nexia software.

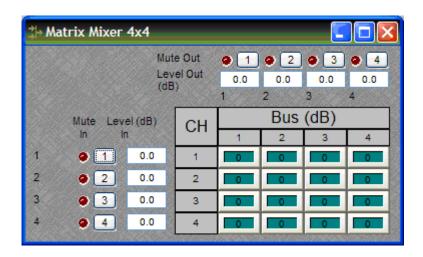

If one or more DSP block is disconnected from the audio path (when connections are not made to at least one input or output) Instance ID numbers will be unassigned. Instance ID numbers will be reassigned once the DSP blocks are properly connected again. The use of Instance ID Tags (in lieu of Instance ID numbers) may help prevent command string conflicts caused by reassignment of Instance ID numbers.

Index

Index refers to inputs, outputs, or cross points of an <u>Attribute</u>. Some Attributes will need an *Index1* (Input or Row) and/or an *Index2* (Output or Column). The tables in the *Attribute* section will define which, if any, indexes are required for the string.

Example: INC 1 AMLVLIN 4 1 1 <LF>

In an Auto Mixer on Device 1 we are increasing the level of input 1 on instance ID 4 by 1dB. Index1 is used to represent the input number.


Example: DEC 2 AMLVLOUT 6 1 2 <LF>

In an Auto Mixer on Device 2 we are decreasing the level of output 1 on instance ID 6 by 2dB. Index2 is used to represent the output number.

Example: SET 1 MMLXP 5 1 2 -5 <LF>

In a Matrix Mixer on Device 1 we are setting crosspoint 1:2 (Input/Row 1, Output/Column 2) level to –5dB on instance ID 5.

Note: For commands with 2 Index fields, Index1 is the Input/Row, and Index2 is the Output/Column.

Value

Value determines what a DSP block is being set to, incremented by, or decremented by. The Attribute section will define which type of value the string will need in order to execute the NTP string.

Example: INC 1 AMLVLIN 4 1 1 <LF>

In an Automatic mixer input level string, the *Value* equal to **1** states that the fader is to be incremented by 1 dB.

Example: SET 2 MMLVLIN 5 2 -100 <LF>

In a matrix mixer input level string, the value is set to -100dB.

Example: RECALL 1 PRESET 1004 <LF>

For a preset recall we are telling device 1 to recall the fourth preset.

*When GET is used, a *Value* will not need to be specified since GET is a request command. A *Value* must be set in order for SET, INC, DEC, and RECALL command strings to work.

Example: GET 4 MMLVLOUT 5 <LF>

We are asking the level of a matrix mixer's output. There is no Value required for this string.

Responses

When a successful SET, SETL, INC, DEC, or RECALL command is sent to an Nexia device via RS-232 or Telnet, Nexia will respond with: '+OK' followed by a carriage return and line feed.

Example: Sending the string: SET 2 AMLVLIN 4 2 1 < LF> will result in an: +OK<CR><LF> response.

A successful GET or GETL command will result in a numerical response to the command string followed by <CR><LF>.

The response from an NTP string with a GET command may contain a decimal point (with 4 numbers after the decimal) and/or negative numbers, depending on type of Attribute addressed. If the control system does not support negative numbers or decimal places a GETL command may be used instead (see page 6).

Example: After sending the above example to an Nexia device the string:

GET 2 AMLVLIN 4 2<LF> would result in the response: 1.0000 <CR><LF> this tells us that the level is currently set to 1dB.

If an incorrect command string is sent, an Nexia will respond with: -ERR<CR><LF>

A space normally proceeds the carriage return/line feed <CR><LF> in a response to a GET command, but this space is not present in the standard '+OK' or '-ERR' responses.

Note: SETD, GETD, INCD, DECD, SETLD, and GETLD commands may be used when a 'full path' serial response to the command is desired. A 'full path' serial response will provide identification of the target object, the original command, and the resulting Value. A 'full path' response to a valid command will always begin with a pound sign (#) and end normally (as described above).

Examples:

Command = SETD 1 IPADDR 192.168.1.197

Response = #SETD 1 IPADDR 192.168.1.197 +OK

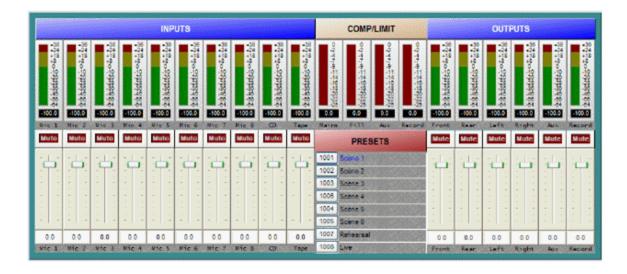
Command = GETD 1 IPADDR

Response = #GETD 1 IPADDR 192.168.1.197

Command = SETD 1 MMLVLXP 38 1 1 -1.1

Response = #SETD 1 MMLVLXP 38 1 1 -1.1 +OK

Command = INCD 1 MMLVLXP 38 1 1 1.0


Response = #INCD 1 MMLVLXP 38 1 1 -0.1000 +OK

It should be noted that, unlike SETD commands/responses, INCD or DECD commands and responses will most often contain different Values. This is because SETD commands specify an exact Value (which will be the same in the response), whereas, INCD and DECD commands specify a 'change' in Value.

Control Dialog - Overview

Nexia software can be used to control Nexia units real time via a network. After connecting to a Nexia device, users, technicians, and designers (as determined by passwords) can access their appropriate level of control of the system. Depending on the authorized access level of control Levels, Meters, Presets, and layers can be accessed and changed.

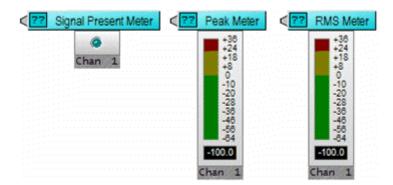
Level Control, Invert, Meter, and Preset block control dialog screens can be minimized and arranged to provide a simple, and intuitive, user interface for the system. Connecting Nexia's Ethernet port, through a switch, to network jacks in various locations can provide control to the system from different locations via a Laptop or Desktop computer.

Note: Nexia's control network can be easily shared on an existing network without compromising network bandwidth. This includes Ethernet connections, but not NexLink which remains separate.

Control Dialog - Levels, Presets, & Meters

Levels

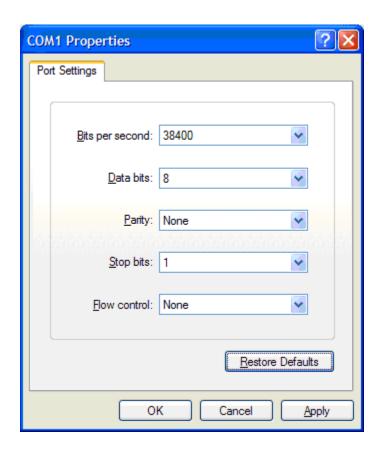
Once Level Controls are placed in a signal path audio levels can be increased, decreased or muted as needed.


Presets

Once *Presets* are created, Preset buttons can be placed on screen and used to easily recall different scenarios.

Meters

If meters are placed on screen, users can view real time Signal Present, RMS, Peak, and Logic indications.



HyperTerminal

HyperTerminal is a useful tool that comes with Windows® and can be used for RS-232 purposes. Simply open a HyperTerminal session by going to: Start> Programs> Accessories> Communications> HyperTerminal. Enter a name for your connection and click 'OK'. Under the pull-down menu labeled 'Connect Using' select the location of your RS-232 Comm. port.

Under the Comm. port properties set it to 38400, 8, None, 1, and None as shown below. Now HyperTerminal is ready to use. Nexia does not echo characters typed, so if you want to view what is being typed into Nexia, click on "echo typed characters locally" in the ASCII setup screen.

Windows® is a registered trademark of Microsoft Corporation.

IP Address Commands

Nexia has some useful IP and reset tools that may be useful when returning to older systems for service work.

Nexia will automatically output its IP Address through the RS-232 port when it is powered up and functioning. Simply have a straight through RS-232 cable connected to Nexia and a PC with HyperTerminal running. When Nexia is powered up it will print the data in the HyperTerminal screen.

Get/Set IP Address

By typing '**GET 0 IPADDR <LF>**' in HyperTerminal Nexia will reveal the IP Address it is set to. Substituting the '0' for a 1, 2, 3, etc will tell Nexia to reveal the IP Address for the device who's number is 1, 2, 3 etc. A '0' asks for the IP Address of the Nexia you are currently connected to. Note: You can only use a 1, 2, 3 etc if there is a system loaded into the Nexia's. If it is a single device system, the only device number will be 1.

If a Nexia does **not** have a system loaded into it, you can set the IP Address via the RS-232 port. Example: **SET 0 IPADDR 192.168.1.101 <LF>.** If there is no NEX file in the Nexia, and the command is typed correctly, Nexia will send back a '+OK' response. You will need to power cycle the Nexia for the new IP Address to take effect. As stated above, Nexia will output the IP Address when powered up, or you can use the GET IPADDR command mentioned above.

Reset

In rare instances it may become necessary to reset the Nexia device. A reset can be accomplished through the device maintenance screen, and this is the desired method for a reset. However, there is a reset command available via the RS-232 port. Simply type: **CLEAR 0 DEVCONFIG <LF>** and the device will be reset.

Index

2		Сору	39, 42
2-Way Crossover Control Dialog	97	Copy DSP Data	43
		Create Custom Block Document	46
3		Create/Edit/Recall	44
3-Way Crossover Control Dialog	97	Crossover Blocks	152
4		Crossovers	97, 152
4-Way Crossover Control Dialog	98	CS Hardware	62
Λ		CS Inputs 10 Channel	
A		CS Output 6 Channel	64
Align Edges		Custom Blocks Menu	
Align Left		Customizing Component Objects	124
Align Objects	57	Cut	38, 42
Align Right		D	
All-Pass Filter Control Dialog	96	Delay Blocks	154
Ambient Noise Compensator	101	•	
ANC Setup Procedure	102	Delay Control Dialog	
Applications	134	Delays	
Architect s & Engineer s Specification	16	Delete	
Arranging Component Objects	123	Device Maintenance	
Attribute	143	Device Maintenance Dialog Box	
Auto Mixers Control Dialog	88	Device Numner	
В		Diagnostics	
Back Color	26	Disconnect	
		Disconnect From System	
Basic Screen Elements		Display	
Bird s Eye View		Documentation	
Bold	25	Ducker Control Dialog	
C		Duplicate	
Center	25	Dynamics	99
Center In View	31	Dynamics Blocks	153
Close	40	E	
Command	140	Edit Menu	42
Command String	7, 109	Equalizer Blocks	
Comp/Limiter Control Dialog	99	Equalizers	
Compile	125, 126	Equipment Table	-
Compile Error Messages	126	Exit	
Compile Options	53	Export	
Compile Results	51	·	
Component Object Properties		F	
Conference System		Feedback Suppressor Control Dialog	93
Connecting Component Objects		Filter Blocks	151
Control Blocks		Filters	93, 94, 151
Control Bus		Font	25
Control Dialog 1, 8, 9, 43, 88, 89, 90, 94,		Fore Color	26
Control Dialog - Levels Presets & Meters		Format Toolbar	25
Control Dialog - Overview		Front Or Back	31
Control Labels		G	
Controls 1, 8, 9, 15, 43, 88, 89, 90, 94, 104, 1	•		
116, 135, 139, 140, 156	-0, 111,	General	
		Generator Blocks	157

Generators	118,	157	Matrix Mixers Control Dialog	89
Graphic Equalizer Control Dialog		92	Merge Into Custom Block	47
Grid Settings		58	Meter Blocks	156
Н			Meters	117, 156
Hatch Style		26	Mixer Blocks	148
Help			Mixers	87, 88, 89, 148
Help Menu			Mix-Minus Combiners	1
High Pass			Mix-Minus Combiners Control Dialog	1
High Pass Filter Control Dialog			Mute Button Dialog	5, 106
High Shelf Filter Control Dialog			N	
Hilite Color			Network	32 41 129
HyperTerminal			Network Options	
•		707	Network Toolbar	
I			New	
Index		157	NexLink	,
Input		144	Noise Gate Control Dialog	
Input/Output Blocks		144	_	
Instance ID Number		157	0	
Introduction		16	Object and Layout Text	125
Invert	5,	106	Object Inspector	28, 50
IP Address Commands		162	Object Property Sheet	28
Italics		25	Object Sheet	57
K			Object Toolbar	24
Keyboard Shortcuts		50	Open	38, 40
-		00	Options	52, 53
L			Order	57
Layers Sheet		29	Overview	138
Layout	22, 26, 27, 51	, 57	Р	
Layout Compile Results		51	Pack Objects	30
Layout Menu		57	Parametric Equalizer Control Dialog	
Layout Property Sheet		27	Pass Through	
Layout Toolbar		26	Passwords	
Level Control Dialog	3,	105	Paste	
Level Inc/Dec Control Dialog	4,	105	Paste DSP Data	, , -
Leveler Control Dialog		99		
Line Property Sheet		27	Peak Meter Control Dialog Pen Width	
Logic Box	14,	114		
Logic Delay	<i>7,</i>	108	Pink Noise Generator Control Dialog	
Logic Gates	6,	107	Placing Component Objects	
Logic Gates Dialog	6,	107	PM Input Stores 12 Channel	
Logic Meter		118	PM Input Stereo 12 Channel	
Low Pass		94	PM Output Stores & Channel	
Low Pass Filter Control Dialog		94	PM Output Stereo 6 Channel	
Low Shelf Filter Control Dialog		95	Presentation Mixer	
М			Preset Button Control Dialog	
		00	Preset Buttons	,
Main Menus			Presets Menu	
Make Same Size			Print	
Matrix		89	Print Preview	41

Print Setup	41	System Connect Considerations	130
Processing Library	23, 44	System Connections	131
Processing Library Menu		System Network Considerations	129
Proper Gain Structure	132	T	
Property Sheet	27	•	00
R		TC - AEC Input 8 Channel TC - AEC Ref 8 Channel	
Recall	16	TC - Input 2 Channel	
Recent File		TC - Output 4 Channel	
Redo		TC - Pre-AEC 8 Channel	
Remote Control Bus		TC Hardware	
Remote Control Bus Hub		Teleconference System	
Remote Preset Button Control Dialog		Telephone Interface	
Responses	ŕ	Telnet Control	
RMS Meter Control Dialog		Text Color	
Room Combiners		Third-Party Control	
Router Blocks		Toggle Grid	
Router Control Dialog	103	Toggle Ruler	
Routers		Tone Generator Control Dialog	
RS-232	•	Tools Menu	
RS-232 and Ethernet Telnet Control	138	Transfer Function	120
RS-232 Parameters	139		
S		U	00.40
Save	20 40 41	Undo	39, 42
Save As	, ,	V	
Salect		Value	158
Select All	-,	VC - AEC Input 8 Channel	<i>73</i>
Send Configuration		VC - AEC Ref 8 Channel	75
Signal Path Identifier		VC - Codec In 1 Channel	<i>7</i> 7
Signal Present Meter Control Dialog		VC - Codec Out 1 Channel	77
Size		VC - Input 2 Channel	76
Software User Interface		VC - Output 4 Channel	76
SP Hardware		VC - Pre-AEC 8 Channel	75
SP Inputs 4 Channel		VC Hardware	72
SP Output 8 Channel		VCB Calibration	12, 112
Space		Videoconference System	78
Speaker Processor		View Menu	43
Specialty		Voltage Control Box	11, 112
Split Into Component Blocks		Volume 8 Control Dialog	8, 109
Split Pass Through Input		Volume/Select 8 Control Dialog	9, 111
Split Pass Through Output		W	
Standard		Warranty	18
Standard Mixers Control Dialog		White Noise Generator Control Dialog	
Standard Toolbar		<u>_</u>	770
Start Audio		Z	
Status Bar		Zoom	30
Stop Audio		Zoom In	30
Sync Data		Zoom Level	30
System Compiling Considerations		Zoom Out	30
-, -, -, -, -, -, -, -, -, -, -, -, -, -			